Construction of asymptotic solutions of some degenerate differential equations with a small parameter
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 212 (2022), pp. 50-56
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper describes possible implementation of the general theory of asymptotic integration of singularly perturbed differential equations developed by S. A. Lomov and his disciples to constructing asymptotic solutions for singularly perturbed differential equations with a power boundary layer.
Keywords:
singularly perturbed differential equation, asymptotic integration, power boundary layer, regularizing function.
@article{INTO_2022_212_a4,
author = {I. V. Zakharova},
title = {Construction of asymptotic solutions of some degenerate differential equations with a small parameter},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {50--56},
publisher = {mathdoc},
volume = {212},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2022_212_a4/}
}
TY - JOUR AU - I. V. Zakharova TI - Construction of asymptotic solutions of some degenerate differential equations with a small parameter JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2022 SP - 50 EP - 56 VL - 212 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2022_212_a4/ LA - ru ID - INTO_2022_212_a4 ER -
%0 Journal Article %A I. V. Zakharova %T Construction of asymptotic solutions of some degenerate differential equations with a small parameter %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2022 %P 50-56 %V 212 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2022_212_a4/ %G ru %F INTO_2022_212_a4
I. V. Zakharova. Construction of asymptotic solutions of some degenerate differential equations with a small parameter. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 212 (2022), pp. 50-56. http://geodesic.mathdoc.fr/item/INTO_2022_212_a4/