On strongly coupled multidimensional elliptic systems
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 212 (2022), pp. 43-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article investigates the Dirichlet problem in a half-space for an elliptic system as per Petrovsky of three equations with three unknown functions depending on three independent variables. Conditions for violation of the Noetherian property of the problem in a concrete half-space are found. It is shown that the strong connectedness of the system does not imply the violation of the Noetherian property of the Dirichlet problem in any half-space.
Keywords: multidimensional elliptic system, strongly coupled systems, Dirichlet problem, multidimensional analog of the Bitsadze system, violation of the Noether property.
@article{INTO_2022_212_a3,
     author = {E. A. Golovko},
     title = {On strongly coupled multidimensional elliptic systems},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {43--49},
     publisher = {mathdoc},
     volume = {212},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_212_a3/}
}
TY  - JOUR
AU  - E. A. Golovko
TI  - On strongly coupled multidimensional elliptic systems
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 43
EP  - 49
VL  - 212
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_212_a3/
LA  - ru
ID  - INTO_2022_212_a3
ER  - 
%0 Journal Article
%A E. A. Golovko
%T On strongly coupled multidimensional elliptic systems
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 43-49
%V 212
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_212_a3/
%G ru
%F INTO_2022_212_a3
E. A. Golovko. On strongly coupled multidimensional elliptic systems. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 212 (2022), pp. 43-49. http://geodesic.mathdoc.fr/item/INTO_2022_212_a3/

[1] Bitsadze A. V., Nekotorye klassy uravnenii v chastnykh proizvodnykh, Nauka, M., 1981 | MR

[2] Gelfand I. M., Petrovskii I. G., Shilov G. E., “Teoriya sistem differentsialnykh uravnenii s chastnymi proizvodnymi”, Trudy tretego vsesoyuznogo matematicheskogo s'ezda, v. 3, Izd-vo AN SSSR, M., 1958, 5–72

[3] Chernyaeva T. N., “Reshenie ne silno ellipticheskikh sistem differentsialnykh uravnenii v chastnykh proizvodnykh”, v. 2 (46), Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie, Irkutsk, 2015, 29–32

[4] Yanushauskas A. I., Granichnye zadachi dlya uravnenii v chastnykh proizvodnykh i integro-differentsialnye uravneniya, Izd-vo Irkut. un-ta, Irkutsk, 1997 | MR