The problem of boundary control of vibrations of a string by displacements at two ends with given states at intermediate time moments
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 212 (2022), pp. 30-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

The boundary control problem is considered for the equation of string vibration with given initial and final conditions, with given values of the deflection function and velocities of points at different intermediate times. The control is carried out by displacement at the two string ends. We propose a constructive approach for constructing boundary control of string vibrations by displacement at two ends with given initial and final conditions and values of the deflection function and velocities of points given at different intermediate times. A computational experiment was carried out with the construction of the corresponding graphs and their comparative analysis, which confirmed the results obtained.
Keywords: vibrations control, boundary control, multipoint intermediate states, variable separation.
@article{INTO_2022_212_a2,
     author = {V. R. Barseghyan and S. V. Solodusha},
     title = {The problem of boundary control of vibrations of a string by displacements at two ends with given states at intermediate time moments},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {30--42},
     publisher = {mathdoc},
     volume = {212},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_212_a2/}
}
TY  - JOUR
AU  - V. R. Barseghyan
AU  - S. V. Solodusha
TI  - The problem of boundary control of vibrations of a string by displacements at two ends with given states at intermediate time moments
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 30
EP  - 42
VL  - 212
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_212_a2/
LA  - ru
ID  - INTO_2022_212_a2
ER  - 
%0 Journal Article
%A V. R. Barseghyan
%A S. V. Solodusha
%T The problem of boundary control of vibrations of a string by displacements at two ends with given states at intermediate time moments
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 30-42
%V 212
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_212_a2/
%G ru
%F INTO_2022_212_a2
V. R. Barseghyan; S. V. Solodusha. The problem of boundary control of vibrations of a string by displacements at two ends with given states at intermediate time moments. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 212 (2022), pp. 30-42. http://geodesic.mathdoc.fr/item/INTO_2022_212_a2/

[1] Abdukarimov M. F., “Ob optimalnom granichnom upravlenii smescheniyami protsessa vynuzhdennykh kolebanii na dvukh kontsakh struny”, Dokl. AN Resp. Tadzhikistan., 56:8 (2013), 612–618 | MR

[2] Andreev A. A., Leksina S. V., “Zadacha granichnogo upravleniya dlya sistemy volnovykh uravnenii”, Vestn. Samarsk. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki., 2008, no. 1 (16), 5–10 | DOI | Zbl

[3] Barsegyan V. R., “Zadacha optimalnogo upravleniya kolebaniyami struny s nerazdelennymi usloviyami na funktsii sostoyaniya v zadannye promezhutochnye momenty vremeni”, Avtomat. telemekh., 2020, no. 2, 36–47 | DOI | Zbl

[4] Barsegyan V. R., Upravlenie sostavnykh dinamicheskikh sistem i sistem s mnogotochechnymi promezhutochnymi usloviyami, Nauka, M., 2016

[5] Barsegyan V. R., Solodusha S. V., “Zadacha granichnogo upravleniya kolebaniyami struny smescheniem levogo kontsa pri zakreplennom pravom kontse s zadannymi znacheniyami funktsii progiba v promezhutochnye momenty vremeni”, Vestn. ross. un-tov. Mat., 25:130 (2020), 131–146 | DOI | Zbl

[6] Butkovskii A. G., Teoriya optimalnogo upravleniya sistemami s raspredelennymi parametrami, Nauka, M., 1965

[7] Gibkina N. V., Sidorov M. V., Stadnikova A. V., “Optimalnoe granichnoe upravlenie kolebaniyami odnorodnoi struny”, Radioelektron. inform. Nauch.-tekhn. zh. KhNURE., 2016, no. 2, 3–11

[8] Zubov V. I., Lektsii po teorii upravleniya, Nauka, M., 1975

[9] Ilin V. A., Moiseev E. I., “Optimizatsiya granichnykh upravlenii kolebaniyami struny”, Usp. mat. nauk., 60:6 (366) (2005), 89–114 | DOI | MR

[10] Kopets M. M., “Zadacha optimalnogo upravleniya protsessom kolebaniya struny”, Teoriya optimalnykh reshenii, Izd-vo In-ta kibernetiki im. V. M. Glushkova NAN Ukrainy, Kiev, 2014, 32–38

[11] Korzyuk V. I., Kozlovskaya I. S., “Dvukhtochechnaya granichnaya zadacha dlya uravneniya kolebaniya struny s zadannoi skorostyu v nekotoryi moment vremeni. II”, Tr. In-ta mat. NAN Belarusi., 19:1 (2011), 62–70 | MR | Zbl

[12] Barseghyan V. R., “About one problem of optimal control of string oscillations with nonseparated multipoint conditions at intermediate moments of time”, Stability, Control and Differential Games. Lect. Notes Control Inform. Sci., eds. Tarasyev A., Maksimov V., Filippova T., Springer, Cham, 2020, 13–25 | DOI | MR | Zbl

[13] Barseghyan V. R., “The problem of optimal control of string vibrations”, Int. Appl. Mech., 56:4 (2020), 471–480 | DOI | MR

[14] Barseghyan V. R., Solodusha S. V., “On one boundary control problem of string vibrations with given velocity of points at an intermediate moment of time”, J. Phys. Conf. Ser., 1847 (2021), 012016 | DOI | MR

[15] Barseghyan V. R., Solodusha S. V., “Optimal boundary control of string vibrations with given shape of deflection at a certain moment of time”, Mathematical Optimization Theory and Operations Research. Lect. Notes Comp. Sci., v. 12755, eds. Pardalos P., Khachay M., Kazakov A., Springer, Cham, 2021, 299–313 | DOI | MR | Zbl