Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2022_212_a12, author = {M. V. Shamolin}, title = {Integrable homogeneous dynamical systems with dissipation on the tangent bundles of four-dimensional manifolds. {III.} {Force} fields with dissipation}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {120--138}, publisher = {mathdoc}, volume = {212}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2022_212_a12/} }
TY - JOUR AU - M. V. Shamolin TI - Integrable homogeneous dynamical systems with dissipation on the tangent bundles of four-dimensional manifolds. III. Force fields with dissipation JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2022 SP - 120 EP - 138 VL - 212 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2022_212_a12/ LA - ru ID - INTO_2022_212_a12 ER -
%0 Journal Article %A M. V. Shamolin %T Integrable homogeneous dynamical systems with dissipation on the tangent bundles of four-dimensional manifolds. III. Force fields with dissipation %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2022 %P 120-138 %V 212 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2022_212_a12/ %G ru %F INTO_2022_212_a12
M. V. Shamolin. Integrable homogeneous dynamical systems with dissipation on the tangent bundles of four-dimensional manifolds. III. Force fields with dissipation. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 212 (2022), pp. 120-138. http://geodesic.mathdoc.fr/item/INTO_2022_212_a12/