On hyperbolic approximation of the problem of determining a source function
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 212 (2022), pp. 113-119.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers the unique solvability of the problem of determining source function in a hyperbolic heat equation with a small parameter as a coefficient to the second time derivative.
Mots-clés : problem of coefficient identification
Keywords: inverse problem, partial differential equation, equation with a small parameter.
@article{INTO_2022_212_a11,
     author = {O. N. Cherepanova},
     title = {On hyperbolic approximation of the problem of determining a source function},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {113--119},
     publisher = {mathdoc},
     volume = {212},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_212_a11/}
}
TY  - JOUR
AU  - O. N. Cherepanova
TI  - On hyperbolic approximation of the problem of determining a source function
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 113
EP  - 119
VL  - 212
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_212_a11/
LA  - ru
ID  - INTO_2022_212_a11
ER  - 
%0 Journal Article
%A O. N. Cherepanova
%T On hyperbolic approximation of the problem of determining a source function
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 113-119
%V 212
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_212_a11/
%G ru
%F INTO_2022_212_a11
O. N. Cherepanova. On hyperbolic approximation of the problem of determining a source function. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 212 (2022), pp. 113-119. http://geodesic.mathdoc.fr/item/INTO_2022_212_a11/

[1] Tikhonov A. N., “O zavisimosti reshenii differentsialnykh uravnenii ot malogo parametra”, Mat. sb., 22 (64):2 (1948), 193–204 | Zbl

[2] Tikhonov A. N., “O sistemakh differentsialnykh uravnenii, soderzhaschikh parametry”, Mat. sb., 27 (69):1 (1950), 97–111

[3] Gradshtein I. S., “Differentsialnye uravneniya s malymi mnozhitelyami pri proizvodnykh i teoriya ustoichivosti Lyapunova”, Dokl. AN SSSR., 65 (6) (1949), 789–792 | Zbl

[4] Gradshtein I. S., “Lineinye uravneniya s peremennymi koeffitsientami i malymi parametrami pri starshikh proizvodnykh”, Mat. sb., 27 (69):1 (1950), 47–68 | Zbl

[5] Rozhdestvenskii B. L., Yanenko N. N., Cistemy kvazilineinykh uravnenii i ikh prilozheniya v gazovoi dinamike, Nauka, M., 1978 | MR

[6] Savateev E. G., “O zadache identifikatsii koeffitsienta parabolicheskogo uravneniya”, Sib. mat. zh., 36:1 (1995), 177–185 | MR | Zbl

[7] Savateev E. G., Slynko O. N., “Korrektnost i kachestvennye svoistva zadachi opredeleniya funktsii istochnika giperbolicheskogo uravneniya teploprovodnosti”, Aktualnye voprosy sovremennoi matematiki, Novosibirsk, 1995, 134–142 | Zbl

[8] Hopf E., “The partial differential equation $u_t=uu_x=\mu u_{xx}$”, Commun. Pure Appl. Math, 3 (1950), 201–230 | DOI | MR | Zbl