On the solvability in the class of distributions of differential equations with derivatives of functionals in Banach spaces
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 212 (2022), pp. 100-112.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers the initial value problem for a differential equation with the derivatives of the functionals in Banach spaces. The operator of the elder derivative has the structure of projector, i.e. its core is infinite-dimensional. The solution is constructed in the space of generalized functions with the support bounded on the left in the form of convolution of the fundamental solution of the differential operator with the right-hand side of the equation, which includes a free function and some initial conditions of the initial problem. The process of construction of the fundamental solution is realized with the aid of a fundamental operator function for a specially constructed matrix differential operator with an irreversible (generally speaking) matrix in the derivative, i.e. with the operator of finite index. Analysis of the generalized solution constructed by this technique allows one to obtain the sufficient conditions of solvability for our initial-value problem in the classes of finite smoothness functions, and also propose constructive formulas needed to restore such a solution. An illustrative example is given.
Keywords: Banach spaces, Fredholm operator, generalized solution, fundamental operator-function.
@article{INTO_2022_212_a10,
     author = {M. V. Falaleev and E. Yu. Grazhdantseva},
     title = {On the solvability in the class of distributions of differential equations with derivatives of functionals in {Banach} spaces},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {100--112},
     publisher = {mathdoc},
     volume = {212},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_212_a10/}
}
TY  - JOUR
AU  - M. V. Falaleev
AU  - E. Yu. Grazhdantseva
TI  - On the solvability in the class of distributions of differential equations with derivatives of functionals in Banach spaces
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 100
EP  - 112
VL  - 212
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_212_a10/
LA  - ru
ID  - INTO_2022_212_a10
ER  - 
%0 Journal Article
%A M. V. Falaleev
%A E. Yu. Grazhdantseva
%T On the solvability in the class of distributions of differential equations with derivatives of functionals in Banach spaces
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 100-112
%V 212
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_212_a10/
%G ru
%F INTO_2022_212_a10
M. V. Falaleev; E. Yu. Grazhdantseva. On the solvability in the class of distributions of differential equations with derivatives of functionals in Banach spaces. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 212 (2022), pp. 100-112. http://geodesic.mathdoc.fr/item/INTO_2022_212_a10/

[1] Vainberg M. M., Trenogin V. A., Teoriya vetvleniya reshenii nelineinykh uravnenii, Nauka, M., 1969 | MR

[2] Vladimirov V. S., Obobschennye funktsii v matematicheskoi fizike, M.: Nauka, 1979 | MR

[3] Vladimirov V. S., Uravneniya matematicheskoi fiziki, M.: Nauka, 1981 | MR

[4] Grazhdantseva E. Yu., Fundamentalnye operator-funktsii vyrozhdennykh differentsialnykh operatorov vysokogo poryadka v banakhovykh prostranstvakh, Izd-vo IGU, Irkutsk, 2013

[5] Demidenko G. V., Uspenskii S. V., Uravneniya i sistemy, ne razreshennye otnositelno starshei proizvodnoi, Nauchnaya kniga, Novosibirsk, 1998 | MR

[6] Romanova O. A., Falaleev M. V., “O nepreryvnykh. obobschennykh, periodicheskikh i konvergentnykh resheniyakh odnogo klassa diffekrentsialnykh uravnenii s proizvodnymi ot funktsionalov”, Dep. VINITI 19.04.89, No 2565-V89. — Irkutsk: Izd-vo IGU., 1989

[7] Sveshnikov A. G., Alshin A. B., Korpusov M. O. i dr., Lineinye i nelineinye uravneniya sobolevskogo tipa, Fizmatlit, M., 2007

[8] Sviridyuk G. A., “K obschei teorii polugrupp operatorov”, Usp. mat. nauk., 49:4 (1994), 47–74 | MR | Zbl

[9] Sidorov N. A., Romanova O. A., “O primenenii nekotorykh rezultatov teorii vetvleniya pri reshenii differentsialnykh uravnenii s vyrozhdeniem”, Differ. uravn., 19:9 (1983), 1516–1526 | MR | Zbl

[10] Sidorov N. A., Falaleev M. V., “Obobschennye resheniya differentsialnykh uravnenii s fredgolmovym operatorom pri proizvodnoi”, Differ. uravn., 23:4 (1987), 726–728 | Zbl

[11] Falaleev M. V., Grazhdantseva E. Yu., “Fundamentalnye operator-funktsii vyrozhdennykh differentsialnykh i differentsialno-raznostnykh operatorov s neterovym operatorom v glavnoi chasti v banakhovykh prostranstvakh”, Sib. mat. zh., 46:6 (2005), 1393–1406 | MR | Zbl

[12] Falaleev M. V., Grazhdantseva E. Yu., “Fundamentalnye operator-funktsii singulyarnykh differentsialnykh operatorov v usloviyakh spektralnoi ogranichennosti”, Differ. uravn., 42:6 (2006), 769–774 | MR | Zbl

[13] Falaleev M. V., “Fundamentalnye operator-funktsii singulyarnykh differentsialnykh operatorov v banakhovykh prostranstvakh”, Sib. mat. zh., 41:5 (2000), 1167-1182 | MR | Zbl

[14] Nashed M. Z., Generalized Inverses and Applications, Academic Press, New York, 1976 | MR | Zbl

[15] Sidorov N., Loginov B., Sinitsyn A., Falaleev M., Lyapunov–Schmidt Methods in Nonlinear Analysis and Applications, Kluwer Academic Publishers, Dordrecht, 2002 | MR | Zbl

[16] Sviridyuk G. A., Fedorov V. E., Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht, 2003 | MR | Zbl