Boussinesq integro-differential equation with integral conditions and a small coefficient of mixed derivatives
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 211 (2022), pp. 114-130.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we prove the unique solvability of a nonlocal boundary-value problem for a high-order, three-dimensional, linear Boussinesq integro-differential equation with a degenerate kernel and general integral conditions and construct a solution in the form of a Fourier series. The absolute and uniform convergence of the resulting series and the possibility of term-by-term differentiation of the solution with respect to all variables are established. A criterion for the unique solvability of the boundary-value problem in the case of regular values of the parameter is obtained. For irregular values of the parameter, an infinite set of solutions is constructed in the form of a Fourier series.
Keywords: integro-differential equation, mixed derivative, unique solvability, integral condition, degenerate kernel.
Mots-clés : Boussinesq equation
@article{INTO_2022_211_a7,
     author = {T. K. Yuldashev and F. D. Rakhmonov and A. S. Ismoilov},
     title = {Boussinesq integro-differential equation with integral conditions and a small coefficient of mixed derivatives},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {114--130},
     publisher = {mathdoc},
     volume = {211},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_211_a7/}
}
TY  - JOUR
AU  - T. K. Yuldashev
AU  - F. D. Rakhmonov
AU  - A. S. Ismoilov
TI  - Boussinesq integro-differential equation with integral conditions and a small coefficient of mixed derivatives
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 114
EP  - 130
VL  - 211
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_211_a7/
LA  - ru
ID  - INTO_2022_211_a7
ER  - 
%0 Journal Article
%A T. K. Yuldashev
%A F. D. Rakhmonov
%A A. S. Ismoilov
%T Boussinesq integro-differential equation with integral conditions and a small coefficient of mixed derivatives
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 114-130
%V 211
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_211_a7/
%G ru
%F INTO_2022_211_a7
T. K. Yuldashev; F. D. Rakhmonov; A. S. Ismoilov. Boussinesq integro-differential equation with integral conditions and a small coefficient of mixed derivatives. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 211 (2022), pp. 114-130. http://geodesic.mathdoc.fr/item/INTO_2022_211_a7/

[1] Antontsev S. N., Kazhikhov A. V., Monakhov V. N., Kraevye zadachi mekhaniki neodnorodnykh zhidkostei, Nauka, Novosibirsk, 1983 | MR

[2] Apakov Yu. P., “O reshenii kraevoi zadachi dlya uravneniya tretego poryadka s kratnymi kharakteristikami”, Ukr. mat. zh., 64:1 (2012), 1–11 | MR

[3] Asanova A. T., “O nelokalnoi kraevoi zadache dlya sistem giperbolicheskikh uravnenii s impulsnymi vozdeistviyami”, Ukr. mat. zh., 65:3 (2013), 315–328 | Zbl

[4] Beshtokov M. Kh., “Chislennyi metod resheniya odnoi nelokalnoi kraevoi zadachi dlya uravneniya tretego poryadka giperbolicheskogo tipa”, Zh. vychisl. mat. mat. fiz., 54:9 (2014), 1497–1514 | MR | Zbl

[5] Boichuk A. A., Strakh A. P., “Neterovy kraevye zadachi dlya sistem lineinykh integro-dinamicheskikh uravnenii s vyrozhdennym yadrom na vremennoi shkale”, Nelin. kolebaniya., 17:1 (2014), 32–38

[6] Gordeziani D. G., Avalishvili G. A., “Resheniya nelokalnykh zadach dlya odnomernykh kolebanii sredy”, Mat. model., 12:1 (2000), 94–103 | MR | Zbl

[7] Dzhumabaev D. S., Bakirova E. A., “Ob odnoznachnoi razreshimosti kraevoi zadachi dlya sistem integrodifferentsialnykh uravnenii Fredgolma s vyrozhdennym yadrom”, Nelin. kolebaniya., 18:4 (2015), 489–506 | MR

[8] Dzhuraev T. D., Sopuev A., K teorii differentsialnykh uravnenii v chastnykh proizvodnykh chetvertogo poryadka, FAN, Tashkent, 2000 | MR

[9] Ivanchov N. I., “Kraevye zadachi dlya parabolicheskogo uravneniya s integralnym usloviem”, Differ. uravn., 40:4 (2004), 547–564 | MR | Zbl

[10] Ilin V. A., “O razreshimosti smeshannykh zadach dlya giperbolicheskogo i parabolicheskogo uravnenii”, Usp. mat. nauk., 15:2 (92) (1960), 97–154

[11] Lazhetich N., “O suschestvovanii klassicheskogo resheniya smeshannoi zadachi dlya odnomernogo giperbolicheskogo uravneniya vtorogo poryadka”, Differ. uravn., 34:5 (1998), 682–694 | MR | Zbl

[12] Martemyanova N. V., “Zadacha Dirikhle dlya uravneniya smeshannogo elliptiko-giperbolicheskogo tipa s peremennym potentsialom”, Izv. vuzov. Mat., 2015, no. 11, 44–53 | Zbl

[13] Moiseev E. I., “O reshenii spektralnym metodom odnoi nelokalnoi kraevoi zadachi”, Differ. uravn., 35:8 (1999), 1094–1100 | MR | Zbl

[14] Pulkina L. S., “Nelokalnaya zadacha dlya giperbolicheskogo uravneniya s integralnymi usloviyami 1 roda s yadrami, zavisyaschimi ot vremeni”, Izv. vuzov. Mat., 2012, no. 10, 32–44 | Zbl

[15] Repin O. A., “Ob odnoi zadache s dvumya nelokalnymi kraevymi usloviyami dlya uravneniya smeshannogo tipa”, Dokl. RAN., 365:5 (1999), 593–595 | MR | Zbl

[16] Sabitov K. B., “Nelokalnaya zadacha dlya uravneniya parabolo-giperbolicheskogo tipa v pryamougolnoi oblasti”, Mat. zametki., 89:4 (2011), 596–602 | Zbl

[17] Skrypnik I. V., Metody issledovaniya nelineinykh ellipticheskikh granichnykh zadach, Nauka, M., 1990 | MR

[18] Tagiev R. K., Gabibov V. M., “Ob odnoi zadache optimalnogo upravleniya dlya uravneniya teploprovodnosti s integralnym granichnym usloviem”, Vestn. Samar. tekhn. un-ta., 20:1 (2016), 54–64 | MR | Zbl

[19] Tikhonov I. V., “Teoremy edinstvennosti v lineinykh nelokalnykh zadachakh dlya abstraktnykh differentsialnykh uravnenii”, Izv. RAN. Ser. mat., 67:2 (2003), 133–166 | MR | Zbl

[20] Chernyatin V. A., Obosnovanie metoda Fure v smeshannoi zadache dlya uravnenii v chastnykh proizvodnykh, Izd-vo MGU, M., 1991 | MR

[21] Egamberdiev U., Apakov Yu. P., “O zadache Dirikhle dlya smeshannogo elliptiko-giperbolicheskogo uravneniya v trekhmernoi oblasti”, Izv. AN UzSSR., 1989, no. 3, 51–56 | MR

[22] Yuldashev T. K., “Smeshannaya zadacha dlya nelineinogo differentsialnogo uravneniya chetvertogo poryadka s malym parametrom pri parabolicheskom operatore”, Zh. vychisl. mat. mat. fiz., 51:9 (2011), 1703–1711 | MR | Zbl

[23] Yuldashev T. K., “Smeshannaya zadacha dlya nelineinogo differentsialnogo uravneniya chetvertogo poryadka s malym parametrom pri parabolicheskom operatore”, Zh. vychisl. mat. mat. fiz., 52:1 (2012), 112–123 | MR | Zbl

[24] Yuldashev T. K., “Ob odnom integro-differentsialnom uravnenii Fredgolma v chastnykh proizvodnykh tretego poryadka”, Izv. vuzov. Mat., 2015, no. 9, 74–79 | Zbl

[25] Yuldashev T. K., “Nelokalnaya smeshannaya zadacha dlya integro-differentsialnogo uravneniya tipa Bussineska s vyrozhdennym yadrom”, Ukr. mat. zh., 68:8 (2016), 1115–1131

[26] Yuldashev T. K., “Ob odnom smeshannom differentsialnom uravnenii chetvertogo poryadka”, Izv. in-ta mat. mekh. Udmurt. gos. un-ta., 47:1 (2016), 119–128 | Zbl

[27] Yuldashev T. K., “Smeshannaya zadacha dlya psevdoparabolicheskogo integro-differentsialnogo uravneniya s vyrozhdennym yadrom”, Differ. uravn., 53:1 (2017), 101–110 | Zbl

[28] Yuldashev T. K., “Ob odnoi kraevoi zadache dlya integro-differentsialnogo uravneniya v chastnykh proizvodnykh chetvertogo poryadka s vyrozhdennym yadrom”, Itogi nauki tekhn. Ser. Sovr. mat. prilozh. Temat. obz., 145 (2018), 95–109 | MR

[29] Yuldashev T. K., “Obratnaya kraevaya zadacha dlya integro-differentsialnogo uravneniya tipa Bussineska s vyrozhdennym yadrom”, Itogi nauki tekhn. Ser. Sovr. mat. prilozh. Temat. obz., 149 (2018), 129–140

[30] Samoilenko A. M., Boichuk A. A., Krivosheya S. A., “Boundary-value problems for systems of integro-differential equations with degenerate kernel”, Ukr. Math. J., 48:11 (1996), 1785–1789 | DOI | MR | Zbl