Systems with~dissipation with~a finite number of degrees of freedom: analysis and ~integrability. I. Primordial problem from dynamics of a multidimensional rigid body in a nonconservative field of forces
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 211 (2022), pp. 41-74

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is the first part of a survey on the integrability of systems with a large number $n$ of degrees of freedom. The review consists of three parts. In this first part, the primordial problem from the dynamics of a multidimensional rigid body placed in a nonconservative force field is described in detail. In the second and third parts, which will be published in the next issues, we consider more general dynamical systems on the tangent bundles to the $n$-dimensional sphere and other smooth manifolds of a sufficiently wide class. Theorems on sufficient conditions for the integrability of the considered dynamical systems in the class of transcendental functions are proved.
Keywords: dynamical system with a large number of degrees of freedom, integrability, transcendental first integral.
@article{INTO_2022_211_a3,
     author = {M. V. Shamolin},
     title = {Systems with~dissipation with~a finite number of degrees of freedom: analysis and ~integrability.  {I.} {Primordial} problem from dynamics of a multidimensional rigid body in a nonconservative field of forces},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {41--74},
     publisher = {mathdoc},
     volume = {211},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_211_a3/}
}
TY  - JOUR
AU  - M. V. Shamolin
TI  - Systems with~dissipation with~a finite number of degrees of freedom: analysis and ~integrability.  I. Primordial problem from dynamics of a multidimensional rigid body in a nonconservative field of forces
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 41
EP  - 74
VL  - 211
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_211_a3/
LA  - ru
ID  - INTO_2022_211_a3
ER  - 
%0 Journal Article
%A M. V. Shamolin
%T Systems with~dissipation with~a finite number of degrees of freedom: analysis and ~integrability.  I. Primordial problem from dynamics of a multidimensional rigid body in a nonconservative field of forces
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 41-74
%V 211
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_211_a3/
%G ru
%F INTO_2022_211_a3
M. V. Shamolin. Systems with~dissipation with~a finite number of degrees of freedom: analysis and ~integrability.  I. Primordial problem from dynamics of a multidimensional rigid body in a nonconservative field of forces. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 211 (2022), pp. 41-74. http://geodesic.mathdoc.fr/item/INTO_2022_211_a3/