Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2022_211_a3, author = {M. V. Shamolin}, title = {Systems with~dissipation with~a finite number of degrees of freedom: analysis and ~integrability. {I.} {Primordial} problem from dynamics of a multidimensional rigid body in a nonconservative field of forces}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {41--74}, publisher = {mathdoc}, volume = {211}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2022_211_a3/} }
TY - JOUR AU - M. V. Shamolin TI - Systems with~dissipation with~a finite number of degrees of freedom: analysis and ~integrability. I. Primordial problem from dynamics of a multidimensional rigid body in a nonconservative field of forces JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2022 SP - 41 EP - 74 VL - 211 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2022_211_a3/ LA - ru ID - INTO_2022_211_a3 ER -
%0 Journal Article %A M. V. Shamolin %T Systems with~dissipation with~a finite number of degrees of freedom: analysis and ~integrability. I. Primordial problem from dynamics of a multidimensional rigid body in a nonconservative field of forces %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2022 %P 41-74 %V 211 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2022_211_a3/ %G ru %F INTO_2022_211_a3
M. V. Shamolin. Systems with~dissipation with~a finite number of degrees of freedom: analysis and ~integrability. I. Primordial problem from dynamics of a multidimensional rigid body in a nonconservative field of forces. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 211 (2022), pp. 41-74. http://geodesic.mathdoc.fr/item/INTO_2022_211_a3/