Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2022_211_a2, author = {M. V. Shamolin}, title = {Integrable homogeneous dynamical systems with dissipation on the tangent bundles of four-dimensional manifolds. {II.} {Potential} force fields}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {29--40}, publisher = {mathdoc}, volume = {211}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2022_211_a2/} }
TY - JOUR AU - M. V. Shamolin TI - Integrable homogeneous dynamical systems with dissipation on the tangent bundles of four-dimensional manifolds. II. Potential force fields JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2022 SP - 29 EP - 40 VL - 211 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2022_211_a2/ LA - ru ID - INTO_2022_211_a2 ER -
%0 Journal Article %A M. V. Shamolin %T Integrable homogeneous dynamical systems with dissipation on the tangent bundles of four-dimensional manifolds. II. Potential force fields %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2022 %P 29-40 %V 211 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2022_211_a2/ %G ru %F INTO_2022_211_a2
M. V. Shamolin. Integrable homogeneous dynamical systems with dissipation on the tangent bundles of four-dimensional manifolds. II. Potential force fields. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 211 (2022), pp. 29-40. http://geodesic.mathdoc.fr/item/INTO_2022_211_a2/