Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2022_210_a8, author = {M. V. Shamolin}, title = {Integrable homogeneous dynamical systems with dissipation on the tangent bundles of four-dimensional manifolds. {I.} {Equations} of geodesic lines}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {77--95}, publisher = {mathdoc}, volume = {210}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2022_210_a8/} }
TY - JOUR AU - M. V. Shamolin TI - Integrable homogeneous dynamical systems with dissipation on the tangent bundles of four-dimensional manifolds. I. Equations of geodesic lines JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2022 SP - 77 EP - 95 VL - 210 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2022_210_a8/ LA - ru ID - INTO_2022_210_a8 ER -
%0 Journal Article %A M. V. Shamolin %T Integrable homogeneous dynamical systems with dissipation on the tangent bundles of four-dimensional manifolds. I. Equations of geodesic lines %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2022 %P 77-95 %V 210 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2022_210_a8/ %G ru %F INTO_2022_210_a8
M. V. Shamolin. Integrable homogeneous dynamical systems with dissipation on the tangent bundles of four-dimensional manifolds. I. Equations of geodesic lines. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 210 (2022), pp. 77-95. http://geodesic.mathdoc.fr/item/INTO_2022_210_a8/