Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2022_210_a2, author = {O. Kh. Abdullaev and A. A. Matchanova}, title = {On the solvability of boundary-value problems for third-order equations of parabolic-hyperbolic type with lower terms}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {12--23}, publisher = {mathdoc}, volume = {210}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2022_210_a2/} }
TY - JOUR AU - O. Kh. Abdullaev AU - A. A. Matchanova TI - On the solvability of boundary-value problems for third-order equations of parabolic-hyperbolic type with lower terms JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2022 SP - 12 EP - 23 VL - 210 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2022_210_a2/ LA - ru ID - INTO_2022_210_a2 ER -
%0 Journal Article %A O. Kh. Abdullaev %A A. A. Matchanova %T On the solvability of boundary-value problems for third-order equations of parabolic-hyperbolic type with lower terms %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2022 %P 12-23 %V 210 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2022_210_a2/ %G ru %F INTO_2022_210_a2
O. Kh. Abdullaev; A. A. Matchanova. On the solvability of boundary-value problems for third-order equations of parabolic-hyperbolic type with lower terms. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 210 (2022), pp. 12-23. http://geodesic.mathdoc.fr/item/INTO_2022_210_a2/
[1] Dzhuraev T. D., Kraevye zadachi dlya uravnenii smeshannogo i smeshanno-sostavnogo tipov, Fan, Tashkent, 1979 | MR
[2] Dzhuraev T. D, Sopuev A., Mamazhonov M., Kraevye zadachi dlya uravnenii smeshannogo i smeshanno-sostavnogo tipov, Fan, Tashkent, 1986 | MR
[3] Mamazhanov M., Kholmuratov D., “Kraevye zadachi dlya uravnenii parabolicheskogo-giperbolicheskogo tipa tretego poryadka”, Differ. uravn., 25:2 (1989), 271–275 | MR | Zbl
[4] Pskhu A. V., Uravneniya v chastnykh proizvodnykh drobnogo poryadka, Nauka, M., 2005
[5] Pulkin S. P., “Integralnoe predstavlenie resheniya zadachi Koshi—Gursa”, Uch. zap. Kuibyshev. gos. ped. in-ta. Fiz.-mat. nauki., 1959, no. 29, 25–40
[6] Salakhitdinov M. S., Uravneniya smeshanno-sostavnogo tipa, Fan, Tashkent, 1974 | MR
[7] Abdullaev O. Kh., Matchanova A. A., “Non-local boundary-value problems for a loaded parabolic-hyperbolic type equation of third order involving Caputo operator”, Bull. Inst. Math., 2018., no. 5, 36–42
[8] Islomov B., Baltaeva U., “Boudanry-value problems for a third-order loaded parabolic-hyperbolic type equation with variable coefficients”, Electron. J. Differ. Equations., 2015, 221 | MR | Zbl
[9] Kadirkulov B. J., “Boundary problems for mixed parabolic-hyperbolic equations with two lines of changing type and fractional derivative”, Electron. J. Differ. Equations., 2014, 57 | MR | Zbl
[10] Karimov E. T., Akhatov J., “A boundary problem with integral gluing condition for a parabolic-hyperbolic equation involving the Caputo fractional derivative”, Electron. J. Differ. Equations., 2014, 14 | MR | Zbl
[11] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, North-Holland, Amsterdam, 2006 | MR | Zbl
[12] Praveen A., Abdullaev O. Kh., “A nonlocal problem with integral gluing condition for a third-order loaded equation with parabolic-hyperbolic operator involving fractional derivatives”, Math. Meth. Appl. Sci., 43 (2019), 3716–3726 | MR
[13] Sadarangani K., Abdullaev O. Kh., “A non-local problem with discontinuous matching condition for loaded mixed-type equation involving the Caputo fractional derivative”, Adv. Difference Equations., 2016, 241 | DOI | MR | Zbl
[14] Yuldashev T. K., Islomov B. I., Alikulov E. K., “Boundary-value problems for loaded third-order parabolic-hyperbolic equations in infinite three-dimensional domains”, Lobachevskii J. Math., 41:5 (2020), 926–944 | DOI | MR | Zbl