Optimal control of inverse thermal processes in a parabolic equation with nonlinear deviations in time
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 210 (2022), pp. 117-135.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we examine the weakly generalized solvability of a nonlinear inverse problem in the nonlinear optimal control of thermal processes for one type of parabolic differential equation with nonlinear deviations. We formulate necessary optimality conditions for nonlinear control and obtain formulas for approximate calculating the state functions of the controlled process, the restoration function, and the optimal control function.
Keywords: nonlinear inverse problem, nonlinear deviation, necessary conditions for optimality of control, nonlinearity of control, minimization of the functional.
@article{INTO_2022_210_a11,
     author = {T. K. Yuldashev},
     title = {Optimal control of inverse thermal processes in a parabolic equation with nonlinear deviations in time},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {117--135},
     publisher = {mathdoc},
     volume = {210},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_210_a11/}
}
TY  - JOUR
AU  - T. K. Yuldashev
TI  - Optimal control of inverse thermal processes in a parabolic equation with nonlinear deviations in time
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 117
EP  - 135
VL  - 210
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_210_a11/
LA  - ru
ID  - INTO_2022_210_a11
ER  - 
%0 Journal Article
%A T. K. Yuldashev
%T Optimal control of inverse thermal processes in a parabolic equation with nonlinear deviations in time
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 117-135
%V 210
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_210_a11/
%G ru
%F INTO_2022_210_a11
T. K. Yuldashev. Optimal control of inverse thermal processes in a parabolic equation with nonlinear deviations in time. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 210 (2022), pp. 117-135. http://geodesic.mathdoc.fr/item/INTO_2022_210_a11/

[1] Aleksandrov A. G., Optimalnye i adaptivnye sistemy, Vysshaya shkola, M., 1989 | MR

[2] Butkovskii A. G., Pustylnikov L. M., Teoriya podvizhnogo upravleniya sistemami s raspredelennymi parametrami, Nauka, M., 1980 | MR

[3] Evtushenko Yu. G., Metody resheniya ekstremalnykh zadach i ikh primenenie v sistemakh optimizatsii, M. | MR

[4] Egorov A. I., Optimalnoe upravlenie teplovymi i diffuzionnymi protsessami, Nauka, M., 1978

[5] Kerimbekov A., Nelineinoe optimalnoe upravlenie lineinymi sistemami s raspredelennymi parametrami, Diss. na soisk. uch. step. d-ra fiz.-mat. nauk, In-t mat. NAN Kyrgyz. Resp., Bishkek, 2003 | Zbl

[6] Lions Zh. L., Optimalnoe upravlenie sistemami, opisyvaemymi uravneniyami s chastnymi proizvodnymi, Mir, M., 1972

[7] Lure K. A., Optimalnoe upravlenie v zadachakh matematicheskoi fiziki, Nauka, M., 1975 | MR

[8] Rapoport E. Ya., Optimalnoe upravlenie sistemami s raspredelennymi parametrami., Vysshaya shkola, M., 2009

[9] Krotov V. F., Gurman V. I., Metody i zadachi optimalnogo upravleniya, Nauka, M., 1973

[10] Kerimbekov A., Nametkulova R. Zh., Kadirimbetova A. K., “Usloviya optimalnosti v zadache upravleniya teplovymi protsessami s integro-differentsialnym uravneniem”, Izv. Irkutsk. un-ta. Ser. Mat., 15 (2016), 50–61 | Zbl

[11] Miller B. M., Rubinovich E. Ya., “Razryvnye resheniya v zadachakh optimalnogo upravleniya i ikh predstavlenie s pomoschyu singulyarnykh prostranstvenno-vremennykh preobrazovanii”, Avtomat. telemekh., 2013, no. 12, 56–103 | Zbl

[12] Srochko V. A., Iteratsionnye metody resheniya zadach optimalnogo upravleniya, Fizmatlit, M., 2000

[13] Tyatyushkin A. I., Chislennye metody i programmnye sredstva optimizatsii upravlyaemykh sistem, Nauka, Novosibirsk, 1992

[14] Fedorenko R. P., Priblizhennoe reshenie zadach optimalnogo upravleniya, Nauka, M., 1978

[15] Yuldashev T. K., “Priblizhennoe reshenie nelineinogo parabolicheskogo i obyknovennogo differentsialnogo uravnenii i priblizhennyi raschet funktsionala kachestva pri izvestnykh upravlyayuschikh vozdeistviyakh”, Probl. upravl., 2014, no. 4, 2–8

[16] Yuldashev T. K., “O postroenii priblizhenii dlya optimalnogo upravleniya v kvazilineinykh uravneniyakh s chastnymi proizvodnymi pervogo poryadka”, Mat. teoriya igr prilozh., 6:3 (2014), 105–119 | MR | Zbl

[17] Yuldashev T. K., “Priblizhennoe reshenie sistemy nelineinykh integralnykh uravnenii Volterra s maksimumami i priblizhennoe vychislenie funktsionala kachestva”, Vestn. Voronezh. un-ta GU. Ser. Sist. anal. inform. tekhnol., 2015, no. 2, 13–20

[18] Yuldashev T. K., “Nelineinoe optimalnoe upravlenie v obratnoi zadache dlya odnoi sistemy s parabolicheskim uravneniem”, Vestn. Tver. un-ta. Ser. Prikl. mat., 2017, no. 2, 59–78

[19] Yuldashev T. K., “Ob odnom optimalnom upravlenii obratnymi teplovymi protsessami s integralnym usloviem pereopredeleniya”, Vestn. Tver. un-ta. Ser. Prikl. mat., 2019, no. 4, 65–87

[20] Yuldashev T. K., “Smeshannaya zadacha dlya nelineinogo differentsialnogo uravneniya chetvertogo poryadka s malym parametrom pri parabolicheskom operatore”, Zh. vychisl. mat. mat. fiz., 51:9 (2011), 1703–1711 | MR | Zbl

[21] Yuldashev T. K., “Smeshannaya zadacha dlya nelineinogo integro-differentsialnogo uravneniya s parabolicheskim operatorom vysokoi stepeni”, Zh. vychisl. mat. mat. fiz., 52:1 (2012), 112–123 | MR | Zbl

[22] Yuldashev T. K., Shabadikov K. Kh., “Smeshannaya zadacha dlya nelineinogo psevdoparabolicheskogo uravneniya vysokogo poryadka”, Itogi nauki i tekhn. Ser. Sovr. mat. prilozh. Temat. obz., 156 (2018), 73–83 | MR

[23] Khurshudyan A. Zh., “On optimal boundary and distributed control of partial integro-differential equations”, Arch. Control Sci., 24 (LX):1 (2014), 5–25 | DOI | MR | Zbl

[24] Kerimbekov A. K., “On solvability of the nonlinear optimal control problem for processes described by the semi-linear parabolic equations”, Proc. World Cong. Eng. London., 1 (2011), 270–275

[25] Kowalewski A., “Optimal control of an infinite order hyperbolic system with multiple time-varying lags”, Automatyka., 15 (2011), 53–65 | MR

[26] Machado L., Abrunheiro L., Martins N. J., “Variational and optimal control approaches for the second-order Herglotz problem on spheres”, Optimal Theory Appl., 2019 182, no. 3, 965–983 | DOI | MR | Zbl

[27] Yuldashev T. K., “Nonlinear optimal control of thermal processes in a nonlinear inverse problem”, Lobachevskii J. Math., 41:1 (2020), 124–136 | DOI | MR | Zbl