Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2022_210_a11, author = {T. K. Yuldashev}, title = {Optimal control of inverse thermal processes in a parabolic equation with nonlinear deviations in time}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {117--135}, publisher = {mathdoc}, volume = {210}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2022_210_a11/} }
TY - JOUR AU - T. K. Yuldashev TI - Optimal control of inverse thermal processes in a parabolic equation with nonlinear deviations in time JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2022 SP - 117 EP - 135 VL - 210 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2022_210_a11/ LA - ru ID - INTO_2022_210_a11 ER -
%0 Journal Article %A T. K. Yuldashev %T Optimal control of inverse thermal processes in a parabolic equation with nonlinear deviations in time %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2022 %P 117-135 %V 210 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2022_210_a11/ %G ru %F INTO_2022_210_a11
T. K. Yuldashev. Optimal control of inverse thermal processes in a parabolic equation with nonlinear deviations in time. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 210 (2022), pp. 117-135. http://geodesic.mathdoc.fr/item/INTO_2022_210_a11/
[1] Aleksandrov A. G., Optimalnye i adaptivnye sistemy, Vysshaya shkola, M., 1989 | MR
[2] Butkovskii A. G., Pustylnikov L. M., Teoriya podvizhnogo upravleniya sistemami s raspredelennymi parametrami, Nauka, M., 1980 | MR
[3] Evtushenko Yu. G., Metody resheniya ekstremalnykh zadach i ikh primenenie v sistemakh optimizatsii, M. | MR
[4] Egorov A. I., Optimalnoe upravlenie teplovymi i diffuzionnymi protsessami, Nauka, M., 1978
[5] Kerimbekov A., Nelineinoe optimalnoe upravlenie lineinymi sistemami s raspredelennymi parametrami, Diss. na soisk. uch. step. d-ra fiz.-mat. nauk, In-t mat. NAN Kyrgyz. Resp., Bishkek, 2003 | Zbl
[6] Lions Zh. L., Optimalnoe upravlenie sistemami, opisyvaemymi uravneniyami s chastnymi proizvodnymi, Mir, M., 1972
[7] Lure K. A., Optimalnoe upravlenie v zadachakh matematicheskoi fiziki, Nauka, M., 1975 | MR
[8] Rapoport E. Ya., Optimalnoe upravlenie sistemami s raspredelennymi parametrami., Vysshaya shkola, M., 2009
[9] Krotov V. F., Gurman V. I., Metody i zadachi optimalnogo upravleniya, Nauka, M., 1973
[10] Kerimbekov A., Nametkulova R. Zh., Kadirimbetova A. K., “Usloviya optimalnosti v zadache upravleniya teplovymi protsessami s integro-differentsialnym uravneniem”, Izv. Irkutsk. un-ta. Ser. Mat., 15 (2016), 50–61 | Zbl
[11] Miller B. M., Rubinovich E. Ya., “Razryvnye resheniya v zadachakh optimalnogo upravleniya i ikh predstavlenie s pomoschyu singulyarnykh prostranstvenno-vremennykh preobrazovanii”, Avtomat. telemekh., 2013, no. 12, 56–103 | Zbl
[12] Srochko V. A., Iteratsionnye metody resheniya zadach optimalnogo upravleniya, Fizmatlit, M., 2000
[13] Tyatyushkin A. I., Chislennye metody i programmnye sredstva optimizatsii upravlyaemykh sistem, Nauka, Novosibirsk, 1992
[14] Fedorenko R. P., Priblizhennoe reshenie zadach optimalnogo upravleniya, Nauka, M., 1978
[15] Yuldashev T. K., “Priblizhennoe reshenie nelineinogo parabolicheskogo i obyknovennogo differentsialnogo uravnenii i priblizhennyi raschet funktsionala kachestva pri izvestnykh upravlyayuschikh vozdeistviyakh”, Probl. upravl., 2014, no. 4, 2–8
[16] Yuldashev T. K., “O postroenii priblizhenii dlya optimalnogo upravleniya v kvazilineinykh uravneniyakh s chastnymi proizvodnymi pervogo poryadka”, Mat. teoriya igr prilozh., 6:3 (2014), 105–119 | MR | Zbl
[17] Yuldashev T. K., “Priblizhennoe reshenie sistemy nelineinykh integralnykh uravnenii Volterra s maksimumami i priblizhennoe vychislenie funktsionala kachestva”, Vestn. Voronezh. un-ta GU. Ser. Sist. anal. inform. tekhnol., 2015, no. 2, 13–20
[18] Yuldashev T. K., “Nelineinoe optimalnoe upravlenie v obratnoi zadache dlya odnoi sistemy s parabolicheskim uravneniem”, Vestn. Tver. un-ta. Ser. Prikl. mat., 2017, no. 2, 59–78
[19] Yuldashev T. K., “Ob odnom optimalnom upravlenii obratnymi teplovymi protsessami s integralnym usloviem pereopredeleniya”, Vestn. Tver. un-ta. Ser. Prikl. mat., 2019, no. 4, 65–87
[20] Yuldashev T. K., “Smeshannaya zadacha dlya nelineinogo differentsialnogo uravneniya chetvertogo poryadka s malym parametrom pri parabolicheskom operatore”, Zh. vychisl. mat. mat. fiz., 51:9 (2011), 1703–1711 | MR | Zbl
[21] Yuldashev T. K., “Smeshannaya zadacha dlya nelineinogo integro-differentsialnogo uravneniya s parabolicheskim operatorom vysokoi stepeni”, Zh. vychisl. mat. mat. fiz., 52:1 (2012), 112–123 | MR | Zbl
[22] Yuldashev T. K., Shabadikov K. Kh., “Smeshannaya zadacha dlya nelineinogo psevdoparabolicheskogo uravneniya vysokogo poryadka”, Itogi nauki i tekhn. Ser. Sovr. mat. prilozh. Temat. obz., 156 (2018), 73–83 | MR
[23] Khurshudyan A. Zh., “On optimal boundary and distributed control of partial integro-differential equations”, Arch. Control Sci., 24 (LX):1 (2014), 5–25 | DOI | MR | Zbl
[24] Kerimbekov A. K., “On solvability of the nonlinear optimal control problem for processes described by the semi-linear parabolic equations”, Proc. World Cong. Eng. London., 1 (2011), 270–275
[25] Kowalewski A., “Optimal control of an infinite order hyperbolic system with multiple time-varying lags”, Automatyka., 15 (2011), 53–65 | MR
[26] Machado L., Abrunheiro L., Martins N. J., “Variational and optimal control approaches for the second-order Herglotz problem on spheres”, Optimal Theory Appl., 2019 182, no. 3, 965–983 | DOI | MR | Zbl
[27] Yuldashev T. K., “Nonlinear optimal control of thermal processes in a nonlinear inverse problem”, Lobachevskii J. Math., 41:1 (2020), 124–136 | DOI | MR | Zbl