Dynamical systems and classification of malfunctions in problems of differential diagnostics
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 210 (2022), pp. 106-116.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we discuss a universal approach to the study of control (not always smooth) dynamical systems and possible malfunctions in such dynamical systems. The universal concepts of reference malfunctions and their neighborhoods are introduced.
Keywords: diagnostics of aircraft motion control system, measured coordinates, classification of malfunctions.
@article{INTO_2022_210_a10,
     author = {M. V. Shamolin},
     title = {Dynamical systems and classification of malfunctions in problems of differential diagnostics},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {106--116},
     publisher = {mathdoc},
     volume = {210},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_210_a10/}
}
TY  - JOUR
AU  - M. V. Shamolin
TI  - Dynamical systems and classification of malfunctions in problems of differential diagnostics
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 106
EP  - 116
VL  - 210
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_210_a10/
LA  - ru
ID  - INTO_2022_210_a10
ER  - 
%0 Journal Article
%A M. V. Shamolin
%T Dynamical systems and classification of malfunctions in problems of differential diagnostics
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 106-116
%V 210
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_210_a10/
%G ru
%F INTO_2022_210_a10
M. V. Shamolin. Dynamical systems and classification of malfunctions in problems of differential diagnostics. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 210 (2022), pp. 106-116. http://geodesic.mathdoc.fr/item/INTO_2022_210_a10/

[1] Borisenok I. T., Shamolin M. V., “Reshenie zadachi differentsialnoi diagnostiki”, Fundam. prikl. mat., 5:3 (1999), 775–790 | MR | Zbl

[2] Borisenok I. T., Shamolin M. V., “Reshenie zadachi differentsialnoi diagnostiki metodom statisticheskikh ispytanii”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 2001, no. 1, 29–31 | MR | Zbl

[3] Zhukov V. P., “O dostatochnykh i neobkhodimykh usloviyakh asimptoticheskoi ustoichivosti nelineinykh dinamicheskikh sistem”, Avtomat. telemekh., 1994, no. 3, 24–36 | Zbl

[4] Zhukov V. P., “O reduktsii zadachi issledovaniya nelineinykh dinamicheskikh sistem na ustoichivost vtorym metodom Lyapunova”, Avtomat. telemekh., 2005, no. 12, 51–64 | Zbl

[5] Zhukov V. P., “O dostatochnykh i neobkhodimykh usloviyakh grubosti nelineinykh dinamicheskikh sistem v smysle sokhraneniya kharaktera ustoichivosti”, Avtomat. telemekh., 2008, no. 1, 30–38 | Zbl

[6] Mironovskii L. A., “Funktsionalnoe diagnostirovanie dinamicheskikh sistem”, Avtomat. telemekh., 1980, no. 3, 96–121

[7] Okunev Yu. M., Parusnikov N. , Strukturnye i algoritmicheskie aspekty modelirovaniya dlya zadach upravleniya, Izd-vo MGU, M., 1983

[8] Parkhomenko P. P., Sagomonyan E. S., Osnovy tekhnicheskoi diagnostiki, Energiya, M., 1981

[9] Chikin M. G., “Sistemy s fazovymi ogranicheniyami”, Avtomat. telemekh., 1987, no. 10, 38–46 | MR | Zbl

[10] Shamolin M. V., Nekotorye zadachi differentsialnoi i topologicheskoi diagnostiki, Ekzamen, M., 2004

[11] Shamolin M. V., Nekotorye zadachi differentsialnoi i topologicheskoi diagnostiki. Izd. 2-e, pererab. i dopoln., Ekzamen, M., 2007

[12] Shamolin M. V., “Rasshirennaya zadacha differentsialnoi diagnostiki i ee vozmozhnoe reshenie”, Elektron. model., 31:1 (2009), 97–115

[13] Shamolin M. V., “Reshenie zadachi diagnostirovaniya v sluchae tochnykh traektornykh izmerenii s oshibkoi”, Elektron. model., 31:3 (2009), 73–90

[14] Shamolin M. V., “Diagnostika neispravnostei v odnoi sisteme nepryamogo upravleniya”, Elektron. model., 31:4 (2009), 55–66

[15] Shamolin M. V., “Diagnostika odnoi sistemy pryamogo upravleniya dvizheniem letatelnykh apparatov”, Elektron. model., 32:1 (2010), 45–52

[16] Shamolin M. V., “Diagnostika dvizheniya letatelnogo apparata v rezhime planiruyuschego spuska”, Elektron. model., 32:5 (2010), 31–44

[17] Shamolin M. V., “Diagnostika girostabilizirovannoi platformy, vklyuchennoi v sistemu upravleniya dvizheniem letatelnogo apparata”, Elektron. model., 33:3 (2011), 121–126

[18] Shamolin M. V., “Reshenie zadachi diagnostirovaniya v sluchayakh traektornykh izmerenii s oshibkoi i tochnykh traektornykh izmerenii”, Itogi nauki tekhn. Ser. Sovr. mat. prilozh. Temat. obz., 150 (2018), 88–109 | MR

[19] Shamolin M. V., Krugova E. P., “Zadacha diagnostiki modeli girostabilizirovannoi platformy”, Itogi nauki tekhn. Ser. Sovr. mat. prilozh. Temat. obz., 160 (2019), 137–141 | MR

[20] Altman E., Avrachenkov K., Menache I., Miller G., Prabhu B. J., Shwartz A., “Power control in wireless cellular networks”, IEEE Trans. Automat. Control., 54:10 (2009), 2328–2340 | DOI | MR | Zbl

[21] Anderson B. D. O., Jury E. I., Mansour M., “Schwarz matrix properties for continuous and discrete time systems”, Int. J. Contr., 3 (1976), 1–16 | DOI | MR

[22] Antoulas A. C., Sorensen D. C., Zhou Y., “On the decay rate of Hankel singular values and related issues”, Syst,. Control Lett., 46 (2002), 323–342 | DOI | MR | Zbl

[23] Beck A., Teboulle M., “Mirror descent and nonlinear projected subgradient methods for convex optimization”, Oper. Res. Lett., 31:3 (2003), 167–175 | DOI | MR | Zbl

[24] Ben-Tal A., Margalit T., Nemirovski A., “The ordered subsets mirror descent optimization method with applications to tomography”, SIAM J. Optim., 12:1 (2001), 79–108 | DOI | MR | Zbl

[25] Ceci C., Gerardi A., Tardelli P., “Existence of optimal controls for partially observed jump processes”, Acta Appl. Math., 74:2 (2002), 155–175 | DOI | MR | Zbl

[26] Chiang M., Tan C. W., Hande P., Lan T., “Power control in wireless cellular networks”, Found. Trends Networking., 2:4 (2008), 381–533 | DOI

[27] Choi D. H., Kim S. H., Sung D. K., “Energy-efficient maneuvering and communication of a single UAV-based relay”, IEEE Trans. Aerosp. Electron. Syst., 50:3 (2014), 2119–2326 | DOI

[28] Fleming W. H., “Optimal control of partially observable diffusions”, SIAM J. Control., 6:2 (1968), 194–214 | DOI | MR | Zbl

[29] Ho D.-T., Grotli E. I., Sujit P. B., Johansen T. A., Sousa J. B., “Optimization of wireless sensor network and UAV data acquisition”, J. Intel. Robot. Syst., 78:1 (2015), 159–179 | DOI

[30] Ober R. J., “Balanced parameterization of classes of linear systems *”, SIAM J. Control Optim., 29:6 (1991), 1251–1287 | DOI | MR | Zbl

[31] Ober R. J., McFarlane D., “Balanced canonical forms for minimal systems: A normalized coprime factor approach”, Linear Algebra Appl., 122-124 (1989), 23–64 | DOI | MR | Zbl

[32] Peeters R., Hanzon B., Olivi M., “Canonical lossless state-space systems: Staircase forms and the Schur algorithm”, Lin. Alg. Appl., 425:2-3 (2007), 404–433 | DOI | MR | Zbl

[33] Rieder U., Winter J., “Optimal control of Markovian jump processes with partial information and applications to a parallel queueing model”, Math. Meth. Oper. Res., 70 (2009), 567–596 | DOI | MR | Zbl

[34] Shamolin M. V., “Foundations of differential and topological diagnostics”, J. Math. Sci., 114:1 (2003), 976–1024 | DOI | MR | Zbl

[35] Su W., Boyd S., Candes E., “A differential equation for modeling Nesterov's accelerated gradient method: Theory and insights”, J. Machine Learning Res., 2016, no. 17 (153), 1–43 | MR | Zbl

[36] Tang X., Wang S., “A low hardware overhead self-diagnosis technique using Reed–Solomon codes for self-repairing chips”, IEEE Trans. Comput., 59:10 (2010), 1309–1319 | DOI | MR | Zbl

[37] Wilson D. A., “The Hankel operator and its induced norms”, Int. J. Contr., 42 (1985), 65–70 | DOI | MR | Zbl