Some tensor invariants of geodesic, potential, and dissipative systems on the tangent bundles of two-dimensional manifolds
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Spring Mathematical School "Modern Methods of the Theory of Boundary-Value Problems. Pontryagin Readings – XXXII”, Voronezh, May 3–9, 2021, Part 2, Tome 209 (2022), pp. 108-116

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we construct tensor invariants (differential forms) of homogeneous dynamical systems on the tangent bundles of smooth two-dimensional manifolds. We establish the relationship between the presence of such invariants and the existence of complete sets of first integrals, which are necessary for integrating geodesic, potential, and dissipative systems. Due to force fields, systems considered are dissipative; they are generalizations of systems considered earlier.
Keywords: dynamical system, integrability, dissipation, transcendental first integral, invariant differential form.
@article{INTO_2022_209_a8,
     author = {M. V. Shamolin},
     title = {Some tensor invariants of geodesic, potential, and dissipative systems on the tangent bundles of two-dimensional manifolds},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {108--116},
     publisher = {mathdoc},
     volume = {209},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_209_a8/}
}
TY  - JOUR
AU  - M. V. Shamolin
TI  - Some tensor invariants of geodesic, potential, and dissipative systems on the tangent bundles of two-dimensional manifolds
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 108
EP  - 116
VL  - 209
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_209_a8/
LA  - ru
ID  - INTO_2022_209_a8
ER  - 
%0 Journal Article
%A M. V. Shamolin
%T Some tensor invariants of geodesic, potential, and dissipative systems on the tangent bundles of two-dimensional manifolds
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 108-116
%V 209
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_209_a8/
%G ru
%F INTO_2022_209_a8
M. V. Shamolin. Some tensor invariants of geodesic, potential, and dissipative systems on the tangent bundles of two-dimensional manifolds. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Spring Mathematical School "Modern Methods of the Theory of Boundary-Value Problems. Pontryagin Readings – XXXII”, Voronezh, May 3–9, 2021, Part 2, Tome 209 (2022), pp. 108-116. http://geodesic.mathdoc.fr/item/INTO_2022_209_a8/