Some tensor invariants of geodesic, potential, and dissipative systems on the tangent bundles of two-dimensional manifolds
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Spring Mathematical School "Modern Methods of the Theory of Boundary-Value Problems. Pontryagin Readings – XXXII”, Voronezh, May 3–9, 2021, Part 2, Tome 209 (2022), pp. 108-116.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we construct tensor invariants (differential forms) of homogeneous dynamical systems on the tangent bundles of smooth two-dimensional manifolds. We establish the relationship between the presence of such invariants and the existence of complete sets of first integrals, which are necessary for integrating geodesic, potential, and dissipative systems. Due to force fields, systems considered are dissipative; they are generalizations of systems considered earlier.
Keywords: dynamical system, integrability, dissipation, transcendental first integral, invariant differential form.
@article{INTO_2022_209_a8,
     author = {M. V. Shamolin},
     title = {Some tensor invariants of geodesic, potential, and dissipative systems on the tangent bundles of two-dimensional manifolds},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {108--116},
     publisher = {mathdoc},
     volume = {209},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_209_a8/}
}
TY  - JOUR
AU  - M. V. Shamolin
TI  - Some tensor invariants of geodesic, potential, and dissipative systems on the tangent bundles of two-dimensional manifolds
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 108
EP  - 116
VL  - 209
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_209_a8/
LA  - ru
ID  - INTO_2022_209_a8
ER  - 
%0 Journal Article
%A M. V. Shamolin
%T Some tensor invariants of geodesic, potential, and dissipative systems on the tangent bundles of two-dimensional manifolds
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 108-116
%V 209
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_209_a8/
%G ru
%F INTO_2022_209_a8
M. V. Shamolin. Some tensor invariants of geodesic, potential, and dissipative systems on the tangent bundles of two-dimensional manifolds. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Spring Mathematical School "Modern Methods of the Theory of Boundary-Value Problems. Pontryagin Readings – XXXII”, Voronezh, May 3–9, 2021, Part 2, Tome 209 (2022), pp. 108-116. http://geodesic.mathdoc.fr/item/INTO_2022_209_a8/

[1] Burbaki N., Integrirovanie. Mery, integrirovanie mer, Nauka, M., 1967 | MR

[2] Burbaki N., Integrirovanie. Mery na lokalno kompaktnykh prostranstvakh. Prodolzhenie mery. Integrirovanie mer. Mery na otdelimykh prostranstvakh, Nauka, M., 1977

[3] Veil G., Simmetriya, URSS, M., 2007

[4] Georgievskii D. V., Shamolin M. V., “Kinematika i geometriya mass tverdogo tela s nepodvizhnoi tochkoi v $\mathbb{R}^n$”, Dokl. RAN., 380:1 (2001), 47–50

[5] Georgievskii D. V., Shamolin M. V., “Obobschennye dinamicheskie uravneniya Eilera dlya tverdogo tela s nepodvizhnoi tochkoi v $\mathbb{R}^n$”, Dokl. RAN., 383:5 (2002), 635–637

[6] Georgievskii D. V., Shamolin M. V., “Pervye integraly uravnenii dvizheniya obobschennogo giroskopa v $\mathbb{R}^{n}$”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 5 (2003), 37–41 | Zbl

[7] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya, Nauka, M., 1979 | MR

[8] Eroshin V. A., Samsonov V. A., Shamolin M. V., “Modelnaya zadacha o tormozhenii tela v soprotivlyayuscheisya srede pri struinom obtekanii”, Izv. RAN. Mekh. zhidk. gaza., 1995, no. 3, 23–27

[9] Ivanova T. A., “Ob uravneniyakh Eilera v modelyakh teoreticheskoi fiziki”, Mat. zametki., 52:2 (1992), 43–51

[10] Kamke E., Spravochnik po obyknovennym differentsialnym uravneniyam, Nauka, M., 1971

[11] Klein F., Neevklidova geometriya, URSS, M., 2017

[12] Kozlov V. V., “Integriruemost i neintegriruemost v gamiltonovoi mekhanike”, Usp. mat. nauk., 38:1 (1983), 3–67 | MR | Zbl

[13] Kozlov V. V., “Ratsionalnye integraly kvaziodnorodnykh dinamicheskikh sistem”, Prikl. mat. mekh., 79:3 (2015), 307–316 | Zbl

[14] Kozlov V. V., “Tenzornye invarianty i integrirovanie differentsialnykh uravnenii”, Usp. mat. nauk., 74:1 (445) (2019), 117–148 | MR | Zbl

[15] Kolmogorov A. N., “O dinamicheskikh sistemakh s integralnym invariantom na tore”, Dokl. AN SSSR., 93:5 (1953), 763–766 | MR | Zbl

[16] Pokhodnya N. V., Shamolin M. V., “Novyi sluchai integriruemosti v dinamike mnogomernogo tela”, Vestn. SamGU. Estestvennonauch. ser., 9:100 (2012), 136–150 | Zbl

[17] Pokhodnya N. V., Shamolin M. V., “Nekotorye usloviya integriruemosti dinamicheskikh sistem v transtsendentnykh funktsiyakh”, Vestn. SamGU. Estestvennonauch. ser., 9/1:110 (2013), 35–41 | Zbl

[18] Pokhodnya N. V., Shamolin M. V., “Integriruemye sistemy na kasatelnom rassloenii k mnogomernoi sfere”, Vestn. SamGU. Estestvennonauch. ser., 7:118 (2014), 60–69 | Zbl

[19] Samsonov V. A., Shamolin M. V., “K zadache o dvizhenii tela v soprotivlyayuscheisya srede”, Vestn. Mosk. un-ta. Ser. 1. Mat. mekh., 1989, no. 3, 51–54 | Zbl

[20] Trofimov V. V., “Uravneniya Eilera na konechnomernykh razreshimykh gruppakh Li”, Izv. AN SSSR. Ser. mat., 44:5 (1980), 1191–1199 | MR | Zbl

[21] Trofimov V. V., “Simplekticheskie struktury na gruppakh avtomorfizmov simmetricheskikh prostranstv”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 1984, no. 6, 31–33 | Zbl

[22] Trofimov V. V., Fomenko A. T., “Metodika postroeniya gamiltonovykh potokov na simmetricheskikh prostranstvakh i integriruemost nekotorykh gidrodinamicheskikh sistem”, Dokl. AN SSSR., 254:6 (1980), 1349–1353 | MR

[23] Trofimov V. V., Shamolin M. V., “Geometricheskie i dinamicheskie invarianty integriruemykh gamiltonovykh i dissipativnykh sistem”, Fundam. prikl. mat., 16:4 (2010), 3–229

[24] Shabat B. V., Vvedenie v kompleksnyi analiz, Nauka, M., 1987 | MR

[25] Shamolin M. V., “Ob integriruemosti v transtsendentnykh funktsiyakh”, Usp. mat. nauk., 53:3 (1998), 209-–210 | MR | Zbl

[26] Shamolin M. V., “Novye integriruemye po Yakobi sluchai v dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi”, Dokl. RAN., 364:5 (1999), 627–629 | Zbl

[27] Shamolin M. V., “Integriruemost po Yakobi v zadache o dvizhenii chetyrekhmernogo tverdogo tela v soprotivlyayuscheisya srede”, Dokl. RAN., 375:3 (2000), 343–346

[28] Shamolin M. V., “Ob integrirovanii nekotorykh klassov nekonservativnykh sistem”, Usp. mat. nauk., 57:1 (2002), 169–170 | MR

[29] Shamolin M. V., “Ob odnom integriruemom sluchae uravnenii dinamiki na $\textrm{so}(4)\times\mathbf{R}^{4}$”, Usp. mat. nauk., 60:6 (2005), 233–234 | MR | Zbl

[30] Shamolin M. V., “Sopostavlenie integriruemykh po Yakobi sluchaev ploskogo i prostranstvennogo dvizheniya tela v srede pri struinom obtekanii”, Prikl. mat. mekh., 69:6 (2005), 1003–1010 | MR | Zbl

[31] Shamolin M. V., “Sluchai polnoi integriruemosti v dinamike na kasatelnom rassloenii dvumernoi sfery”, Usp. mat. nauk., 62:5 (2007), 169–170 | MR | Zbl

[32] Shamolin M. V., “Novye sluchai polnoi integriruemosti v dinamike dinamicheski simmetrichnogo chetyrekhmernogo tverdogo tela v nekonservativnom pole”, Dokl. RAN., 425:3 (2009), 338–342 | MR | Zbl

[33] Shamolin M. V., “Sluchai polnoi integriruemosti v dinamike chetyrekhmernogo tverdogo tela v nekonservativnom pole”, Usp. mat. nauk., 65:1 (2010), 189–190 | MR | Zbl

[34] Shamolin M. V., “Novyi sluchai integriruemosti v dinamike chetyrekhmernogo tverdogo tela v nekonservativnom pole”, Dokl. RAN., 437:2 (2011), 190–193 | MR

[35] Shamolin M. V., “Polnyi spisok pervykh integralov v zadache o dvizhenii chetyrekhmernogo tverdogo tela v nekonservativnom pole pri nalichii lineinogo dempfirovaniya”, Dokl. RAN., 440:2 (2011), 187–190 | MR

[36] Shamolin M. V., “Novyi sluchai integriruemosti v dinamike chetyrekhmernogo tverdogo tela v nekonservativnom pole pri nalichii lineinogo dempfirovaniya”, Dokl. RAN., 444:5 (2012), 506–509 | MR

[37] Shamolin M. V., “Novyi sluchai integriruemosti v prostranstvennoi dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi, pri uchete lineinogo dempfirovaniya”, Dokl. RAN., 442:4 (2012), 479–-481 | MR

[38] Shamolin M. V., “Novyi sluchai integriruemosti v dinamike mnogomernogo tverdogo tela v nekonservativnom pole”, Dokl. RAN., 453:1 (2013), 46–49 | MR

[39] Shamolin M. V., “Novyi sluchai integriruemosti uravnenii dinamiki na kasatelnom rassloenii k trekhmernoi sfere”, Usp. mat. nauk., 68:5 (413) (2013), 185–186 | MR | Zbl

[40] Shamolin M. V., “Polnyi spisok pervykh integralov dinamicheskikh uravnenii dvizheniya chetyrekhmernogo tverdogo tela v nekonservativnom pole pri nalichii lineinogo dempfirovaniya”, Dokl. RAN., 449:4 (2013), 416–419 | MR

[41] Shamolin M. V., “Novyi sluchai integriruemosti v dinamike mnogomernogo tverdogo tela v nekonservativnom pole pri uchete lineinogo dempfirovaniya”, Dokl. RAN., 457:5 (2014), 542–545 | MR

[42] Shamolin M. V., “Integriruemye sistemy s peremennoi dissipatsiei na kasatelnom rassloenii k mnogomernoi sfere i prilozheniya”, Fundam. prikl. mat., 20:4 (2015), 3–231

[43] Shamolin M. V., “Polnyi spisok pervykh integralov dinamicheskikh uravnenii dvizheniya mnogomernogo tverdogo tela v nekonservativnom pole”, Dokl. RAN., 461:5 (2015), 533–536 | MR

[44] Shamolin M. V., “Polnyi spisok pervykh integralov uravnenii dvizheniya mnogomernogo tverdogo tela v nekonservativnom pole pri nalichii lineinogo dempfirovaniya”, Dokl. RAN., 464:6 (2015), 688–692 | MR

[45] Shamolin M. V., “Integriruemye nekonservativnye dinamicheskie sistemy na kasatelnom rassloenii k mnogomernoi sfere”, Differ. uravn., 52:6 (2016), 743–759 | Zbl

[46] Shamolin M. V., “Novye sluchai integriruemykh sistem s dissipatsiei na kasatelnom rassloenii dvumernogo mnogoobraziya”, Dokl. RAN., 475:5 (2017), 519–523 | MR

[47] Shamolin M. V., “Novye sluchai integriruemykh sistem s dissipatsiei na kasatelnom rassloenii k mnogomernoi sfere”, Dokl. RAN., 474:2 (2017), 177–181 | MR

[48] Shamolin M. V., “Novye sluchai integriruemykh sistem s dissipatsiei na kasatelnom rassloenii trekhmernogo mnogoobraziya”, Dokl. RAN., 477:2 (2017), 168–172 | MR

[49] Shamolin M. V., “Integriruemye dinamicheskie sistemy s konechnym chislom stepenei svobody s dissipatsiei”, Probl. mat. anal., 2018, no. 95, 79–101 | MR | Zbl

[50] Shamolin M. V., “Novye sluchai integriruemykh sistem s dissipatsiei na kasatelnom rassloenii mnogomernogo mnogoobraziya”, Dokl. RAN., 482:5 (2018), 527–533 | MR

[51] Shamolin M. V., “Novye sluchai integriruemykh sistem s dissipatsiei na kasatelnom rassloenii chetyrekhmernogo mnogoobraziya”, Dokl. RAN., 479:3 (2018), 270–276 | MR

[52] Shamolin M. V., “Novye sluchai integriruemykh sistem devyatogo poryadka s dissipatsiei”, Dokl. RAN., 489:6 (2019), 592–598

[53] Shamolin M. V., “Novye sluchai integriruemykh sistem pyatogo poryadka s dissipatsiei”, Dokl. RAN., 485:5 (2019), 583–587

[54] Shamolin M. V., “Novye sluchai integriruemykh sistem sedmogo poryadka s dissipatsiei”, Dokl. RAN., 487:4 (2019), 381–386

[55] Shamolin M. V., “Novye sluchai integriruemykh sistem nechetnogo poryadka s dissipatsiei”, Dokl. RAN. Mat. inform. protsessy upravl., 491:1 (2020), 95–101 | MR | Zbl

[56] Shamolin M. V., “Novye sluchai odnorodnykh integriruemykh sistem s dissipatsiei na kasatelnom rassloenii dvumernogo mnogoobraziya”, Dokl. RAN. Mat. inform. protsessy upravl., 494:1 (2020), 105–111 | MR | Zbl

[57] Shamolin M. V., “Novye sluchai odnorodnykh integriruemykh sistem s dissipatsiei na kasatelnom rassloenii trekhmernogo mnogoobraziya”, Dokl. RAN. Mat. inform. protsessy upravl., 495:1 (2020), 84–90 | MR | Zbl

[58] Shamolin M. V., “Novye sluchai odnorodnykh integriruemykh sistem s dissipatsiei na kasatelnom rassloenii chetyrekhmernogo mnogoobraziya”, Dokl. RAN. Mat. inform. protsessy upravl., 497:1 (2021), 23–30 | Zbl

[59] Shamolin M. V., “Novye sluchai integriruemosti geodezicheskikh, potentsialnykh i dissipativnykh sistem na kasatelnom rassloenii konechnomernogo mnogoobraziya”, Dokl. RAN. Mat. inform. protsessy upravl., 500:1 (2021), 78–86 | Zbl

[60] Poincaré H., Calcul des probabilités, Gauthier-Villars, Paris, 1912 | MR

[61] Shamolin M. V., “Some questions of the qualitative theory of ordinary differential equations and dynamics of a rigid body interacting with a medium”, J. Math. Sci., 110:2 (2002), 2528–2557 | DOI | MR | Zbl

[62] Tikhonov A. A., Yakovlev A. B., “On dependence of equilibrium characteristics of the space tethered system on environmental parameters”, Int. J. Plasma Env. Sci. Techn., 13:1, 49–52 | MR