Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2022_209_a2, author = {E. Z. Zainullina and V. S. Pavlenko and A. N. Sesekin and N. V. Gredasova}, title = {On {Ulam--Hyers} stability of solutions to first-order differential equations with generalized action}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {25--32}, publisher = {mathdoc}, volume = {209}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2022_209_a2/} }
TY - JOUR AU - E. Z. Zainullina AU - V. S. Pavlenko AU - A. N. Sesekin AU - N. V. Gredasova TI - On Ulam--Hyers stability of solutions to first-order differential equations with generalized action JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2022 SP - 25 EP - 32 VL - 209 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2022_209_a2/ LA - ru ID - INTO_2022_209_a2 ER -
%0 Journal Article %A E. Z. Zainullina %A V. S. Pavlenko %A A. N. Sesekin %A N. V. Gredasova %T On Ulam--Hyers stability of solutions to first-order differential equations with generalized action %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2022 %P 25-32 %V 209 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2022_209_a2/ %G ru %F INTO_2022_209_a2
E. Z. Zainullina; V. S. Pavlenko; A. N. Sesekin; N. V. Gredasova. On Ulam--Hyers stability of solutions to first-order differential equations with generalized action. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Spring Mathematical School "Modern Methods of the Theory of Boundary-Value Problems. Pontryagin Readings – XXXII”, Voronezh, May 3–9, 2021, Part 2, Tome 209 (2022), pp. 25-32. http://geodesic.mathdoc.fr/item/INTO_2022_209_a2/
[1] Samoilenko A. M., Perestyuk N. A., Differentsialnye uravneniya s impulsnym vozdeistviem, Vischa shkola, Kiev, 1987
[2] Jung S.-M., “Hyers–Ulam stability of linear differential equations of first order, II”, Appl. Math. Lett., 19:9 (2006), 854–858 | DOI | MR | Zbl
[3] Jung S.-M., “Hyers–Ulam stability of linear differential equations of first order, III”, J. Math. Anal. Appl., 311:1 (2005), 139–146 | DOI | MR | Zbl
[4] Wang G. M., Zhou M., Sun L., “Hyers–Ulam stability of linear differential equations of first order”, Appl. Math. Lett., 21:10 (2008), 1024–1028 | DOI | MR | Zbl
[5] Wang J. R., Feéckan M., Zhou Y., “Ulam's type stability of impulsive ordinary differential equations”, J. Math. Anal. Appl., 395:1 (2012), 258–264 | DOI | MR | Zbl
[6] Zada A., Riaz U., Khan F. U., “Hyers–Ulam stability of impulsive integral equations”, Boll. Unione Mat. Ital., 12 (2019), 453–467 | DOI | MR | Zbl
[7] Zavalishchine S. T., Sesekin A. N., Dynamic Impulse Systems: Theory and Applications, Kluwer Academic, 1997 | MR