On Ulam--Hyers stability of solutions to first-order differential equations with generalized action
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Spring Mathematical School "Modern Methods of the Theory of Boundary-Value Problems. Pontryagin Readings – XXXII”, Voronezh, May 3–9, 2021, Part 2, Tome 209 (2022), pp. 25-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to sufficient conditions for the Ulam–Hyers stability of solutions of first-order linear differential equations. We introduce the concept of the Ulam–Hyers stability for equations with unbounded right-hand sides whose solutions are functions of bounded variation and obtain sufficient conditions that guarantee this stability.
Keywords: Ulam–Hyers stability, differential equation, discontinuous solution.
@article{INTO_2022_209_a2,
     author = {E. Z. Zainullina and V. S. Pavlenko and A. N. Sesekin and N. V. Gredasova},
     title = {On {Ulam--Hyers} stability of solutions to first-order differential equations with generalized action},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {25--32},
     publisher = {mathdoc},
     volume = {209},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_209_a2/}
}
TY  - JOUR
AU  - E. Z. Zainullina
AU  - V. S. Pavlenko
AU  - A. N. Sesekin
AU  - N. V. Gredasova
TI  - On Ulam--Hyers stability of solutions to first-order differential equations with generalized action
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 25
EP  - 32
VL  - 209
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_209_a2/
LA  - ru
ID  - INTO_2022_209_a2
ER  - 
%0 Journal Article
%A E. Z. Zainullina
%A V. S. Pavlenko
%A A. N. Sesekin
%A N. V. Gredasova
%T On Ulam--Hyers stability of solutions to first-order differential equations with generalized action
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 25-32
%V 209
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_209_a2/
%G ru
%F INTO_2022_209_a2
E. Z. Zainullina; V. S. Pavlenko; A. N. Sesekin; N. V. Gredasova. On Ulam--Hyers stability of solutions to first-order differential equations with generalized action. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Spring Mathematical School "Modern Methods of the Theory of Boundary-Value Problems. Pontryagin Readings – XXXII”, Voronezh, May 3–9, 2021, Part 2, Tome 209 (2022), pp. 25-32. http://geodesic.mathdoc.fr/item/INTO_2022_209_a2/

[1] Samoilenko A. M., Perestyuk N. A., Differentsialnye uravneniya s impulsnym vozdeistviem, Vischa shkola, Kiev, 1987

[2] Jung S.-M., “Hyers–Ulam stability of linear differential equations of first order, II”, Appl. Math. Lett., 19:9 (2006), 854–858 | DOI | MR | Zbl

[3] Jung S.-M., “Hyers–Ulam stability of linear differential equations of first order, III”, J. Math. Anal. Appl., 311:1 (2005), 139–146 | DOI | MR | Zbl

[4] Wang G. M., Zhou M., Sun L., “Hyers–Ulam stability of linear differential equations of first order”, Appl. Math. Lett., 21:10 (2008), 1024–1028 | DOI | MR | Zbl

[5] Wang J. R., Feéckan M., Zhou Y., “Ulam's type stability of impulsive ordinary differential equations”, J. Math. Anal. Appl., 395:1 (2012), 258–264 | DOI | MR | Zbl

[6] Zada A., Riaz U., Khan F. U., “Hyers–Ulam stability of impulsive integral equations”, Boll. Unione Mat. Ital., 12 (2019), 453–467 | DOI | MR | Zbl

[7] Zavalishchine S. T., Sesekin A. N., Dynamic Impulse Systems: Theory and Applications, Kluwer Academic, 1997 | MR