Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2022_209_a1, author = {Yu. A. Gladyshev and E. A. Loshkareva}, title = {On the construction of generalized powers for the {Dirac} equation of quantum electrodynamics}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {16--24}, publisher = {mathdoc}, volume = {209}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2022_209_a1/} }
TY - JOUR AU - Yu. A. Gladyshev AU - E. A. Loshkareva TI - On the construction of generalized powers for the Dirac equation of quantum electrodynamics JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2022 SP - 16 EP - 24 VL - 209 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2022_209_a1/ LA - ru ID - INTO_2022_209_a1 ER -
%0 Journal Article %A Yu. A. Gladyshev %A E. A. Loshkareva %T On the construction of generalized powers for the Dirac equation of quantum electrodynamics %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2022 %P 16-24 %V 209 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2022_209_a1/ %G ru %F INTO_2022_209_a1
Yu. A. Gladyshev; E. A. Loshkareva. On the construction of generalized powers for the Dirac equation of quantum electrodynamics. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Spring Mathematical School "Modern Methods of the Theory of Boundary-Value Problems. Pontryagin Readings – XXXII”, Voronezh, May 3–9, 2021, Part 2, Tome 209 (2022), pp. 16-24. http://geodesic.mathdoc.fr/item/INTO_2022_209_a1/
[1] Gladyshev Yu. A., Metod obobschennykh stepenei Bersa i ego prilozhenie v matematicheskoi fizike, Izd-vo KGU, Kaluga, 2011
[2] Gladyshev Yu. A., Loshkareva E. A., “O metodakh postroeniya kompleksnykh obobschennykh stepenei Bersa”, Vestn. Kaluzh. un-ta., 2020, no. 2 (47), 77–80 | MR
[3] Gladyshev Yu. A., Formalizm Beltrami—Bersa i ego prilozheniya v matematicheskoi fizike, Izd-vo KGU, Kaluga, 1997
[4] Gladyshev Yu. A., Loshkareva E. A., “O prilozhenii metoda obobschennykh stepenei Bersa dlya resheniya uravneniya Diraka”, Tr. Mezhdunar. konf. «Matematicheskie idei P. L. Chebysheva i ikh prilozheniya k sovremennym problemam estestvoznaniya», Kaluga, 2021, 300–301
[5] Sokolov A. A., Ivanenko D. D., Kvantovaya terriya polya, M., 1952
[6] Bers L., Gelbart A., “On a class of differential equation in mechanics of continua”, Q. Appl. Math., 1:2 (1943), 168–189 | DOI | MR
[7] Gladyshev Yu. A., Loshkareva E. A. On one physical interpretation of generalized Cauchy–Riemann conditions, J. Phys. Conf. Ser., 1902 (2021), 012037 | DOI