On the construction of generalized powers for the Dirac equation of quantum electrodynamics
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Spring Mathematical School "Modern Methods of the Theory of Boundary-Value Problems. Pontryagin Readings – XXXII”, Voronezh, May 3–9, 2021, Part 2, Tome 209 (2022), pp. 16-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to applications of the method of generalized powers for constructing a class of solutions of the Dirac equation in the case of a free particle. Possible generalizations of the method are indicated and examples are given.
Keywords: generalized power, operator, quantum electrodynamics.
Mots-clés : Dirac equation
@article{INTO_2022_209_a1,
     author = {Yu. A. Gladyshev and E. A. Loshkareva},
     title = {On the construction of generalized powers for the {Dirac} equation of quantum electrodynamics},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {16--24},
     publisher = {mathdoc},
     volume = {209},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_209_a1/}
}
TY  - JOUR
AU  - Yu. A. Gladyshev
AU  - E. A. Loshkareva
TI  - On the construction of generalized powers for the Dirac equation of quantum electrodynamics
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 16
EP  - 24
VL  - 209
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_209_a1/
LA  - ru
ID  - INTO_2022_209_a1
ER  - 
%0 Journal Article
%A Yu. A. Gladyshev
%A E. A. Loshkareva
%T On the construction of generalized powers for the Dirac equation of quantum electrodynamics
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 16-24
%V 209
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_209_a1/
%G ru
%F INTO_2022_209_a1
Yu. A. Gladyshev; E. A. Loshkareva. On the construction of generalized powers for the Dirac equation of quantum electrodynamics. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Spring Mathematical School "Modern Methods of the Theory of Boundary-Value Problems. Pontryagin Readings – XXXII”, Voronezh, May 3–9, 2021, Part 2, Tome 209 (2022), pp. 16-24. http://geodesic.mathdoc.fr/item/INTO_2022_209_a1/

[1] Gladyshev Yu. A., Metod obobschennykh stepenei Bersa i ego prilozhenie v matematicheskoi fizike, Izd-vo KGU, Kaluga, 2011

[2] Gladyshev Yu. A., Loshkareva E. A., “O metodakh postroeniya kompleksnykh obobschennykh stepenei Bersa”, Vestn. Kaluzh. un-ta., 2020, no. 2 (47), 77–80 | MR

[3] Gladyshev Yu. A., Formalizm Beltrami—Bersa i ego prilozheniya v matematicheskoi fizike, Izd-vo KGU, Kaluga, 1997

[4] Gladyshev Yu. A., Loshkareva E. A., “O prilozhenii metoda obobschennykh stepenei Bersa dlya resheniya uravneniya Diraka”, Tr. Mezhdunar. konf. «Matematicheskie idei P. L. Chebysheva i ikh prilozheniya k sovremennym problemam estestvoznaniya», Kaluga, 2021, 300–301

[5] Sokolov A. A., Ivanenko D. D., Kvantovaya terriya polya, M., 1952

[6] Bers L., Gelbart A., “On a class of differential equation in mechanics of continua”, Q. Appl. Math., 1:2 (1943), 168–189 | DOI | MR

[7] Gladyshev Yu. A., Loshkareva E. A. On one physical interpretation of generalized Cauchy–Riemann conditions, J. Phys. Conf. Ser., 1902 (2021), 012037 | DOI