Linkedness of families of sets, supercompactness, and some generalizations
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Spring Mathematical School "Modern Methods of the Theory of Boundary-Value Problems. Pontryagin Readings – XXXII”, Voronezh, May 3–9, 2021, Part 1, Tome 208 (2022), pp. 79-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

We examine a construction that has the meaning of an abstract analog of a superextension of a topological space and new types of supercompact topological spaces. In addition, we study relations between ultrafilters and maximal linked systems on measurable spaces.
Keywords: linkedness, supercompactness, topology, ultrafilter.
@article{INTO_2022_208_a8,
     author = {A. G. Chentsov},
     title = {Linkedness of families of sets, supercompactness, and some generalizations},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {79--90},
     publisher = {mathdoc},
     volume = {208},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_208_a8/}
}
TY  - JOUR
AU  - A. G. Chentsov
TI  - Linkedness of families of sets, supercompactness, and some generalizations
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 79
EP  - 90
VL  - 208
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_208_a8/
LA  - ru
ID  - INTO_2022_208_a8
ER  - 
%0 Journal Article
%A A. G. Chentsov
%T Linkedness of families of sets, supercompactness, and some generalizations
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 79-90
%V 208
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_208_a8/
%G ru
%F INTO_2022_208_a8
A. G. Chentsov. Linkedness of families of sets, supercompactness, and some generalizations. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Spring Mathematical School "Modern Methods of the Theory of Boundary-Value Problems. Pontryagin Readings – XXXII”, Voronezh, May 3–9, 2021, Part 1, Tome 208 (2022), pp. 79-90. http://geodesic.mathdoc.fr/item/INTO_2022_208_a8/

[13] Aleksandrov P. S., Vvedenie v teoriyu mnozhestv i obschuyu topologiyu, Editorial URSS, M., 2004

[14] Arkhangelskii A. V., “Kompaktnost”, Itogi nauki tekhn. Ser. Sovr. probl. mat. Fundam. napr., 50 (1989), 7–128

[15] Bulinskii A. V., Shiryaev A. N., Teoriya sluchainykh protsessov, Fizmatlit, M., 2005

[16] Burbaki N., Obschaya topologiya. Osnovnye struktury, Nauka, M., 1968

[17] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977

[18] Gamkrelidze R. V., Osnovy optimalnogo upravleniya, Izd-vo Tbilis. un-ta, Tbilisi, 1977 | MR

[19] Kelli Dzh. L., Obschaya topologiya, Nauka, M., 1981 | MR

[20] Krasovskii N. N., Teoriya upravleniya dvizheniem, Nauka, M., 1968

[21] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974 | MR

[22] Kuratovskii K., Mostovskii A., Teoriya mnozhestv, Mir, M., 1970

[23] Pytkeev E. G., Chentsov A. G., “Volmenovskii kompaktifikator i ego primenenie dlya issledovaniya abstraktnoi zadachi o dostizhimosti”, Vestn. Udmurt. un-ta. Mat. Mekh. Komp. nauki., 28:2 (2018), 199–-212 | MR | Zbl

[24] Fedorchuk V. V., Filippov V. V., Obschaya topologiya. Osnovnye konstruktsii, Fizmatlit, M., 2006

[25] Chentsov A. G., Elementy konechno-additivnoi teorii mery, UGTU-UPI, Ekaterinburg, 2008

[26] Chentsov A. G., “Filtry i ultrafiltry v konstruktsiyakh mnozhestv prityazheniya”, Vestn. Udmurt. un-ta. Mat. Mekh. Komp. nauki., 2011, no. 1, 113–142 | Zbl

[27] Chentsov A. G., “Nekotorye svoistva ultrafiltrov, svyazannye s konstruktsiyami rasshirenii”, Vestn. Udmurt. un-ta. Mat. Mekh. Komp. nauki., 2014, no. 1, 87–101 | Zbl

[28] Chentsov A. G., “Kompaktifikatory v konstruktsiyakh rasshirenii zadach o dostizhimosti s ogranicheniyami asimptoticheskogo kharaktera”, Tr. In-ta mat. mekh. UrO RAN., 22:1 (2016), 294–309 | MR

[29] Chentsov A. G., “Superrasshirenie kak bitopologicheskoe prostranstvo”, Izv. In-ta mat. inform. Udmurt. un-ta., 49 (2017), 55–79 | Zbl

[30] Chentsov A. G., “Ultrafiltry i maksimalnye stseplennye sistemy”, Vestn. Udmurt. un-ta. Mat. Mekh. Komp. nauki., 2017, no. 3, 122–141

[31] Chentsov A. G., “Bitopologicheskie prostranstva ultrafiltrov i maksimalnykh stseplennykh sistem”, Tr. In-ta mat. mekh. UrO RAN., 24:1 (2018), 257–272 | MR

[32] Chentsov A. G., “Ultrafiltry i maksimalnye stseplennye sistemy: osnovnye svoistva i topologicheskie konstruktsii”, Izv. In-ta mat. inform. Udmurt. un-ta., 52 (2018), 86–102 | Zbl

[33] Chentsov A. G., “Nekotorye svoistva ultrafiltrov shiroko ponimaemykh izmerimykh prostranstv”, Dokl. RAN., 486:1 (2019), 24–29 | Zbl

[34] Chentsov A. G., “Superkompaktnye prostranstva ultrafiltrov i maksimalnykh stseplennykh sistem”, Tr. In-ta mat. mekh. UrO RAN., 25:2 (2019), 240–257 | MR

[35] Chentsov A. G., “O superkompaktnosti prostranstva ultrafiltrov s topologiei volmenovskogo tipa”, Izv. In-ta mat. inform. Udmurt. un-ta., 54 (2019), 74–101 | Zbl

[36] Chentsov A. G., “Nekotorye topologicheskie svoistva prostranstva maksimalnykh stseplennykh sistem s topologiei volmenovskogo tipa”, Izv. In-ta mat. inform. Udmurt. un-ta., 56 (2020), 122–137 | Zbl

[37] Engelking R., Obschaya topologiya, Mir, M., 1986 | MR

[38] Dvalishvili B. P., Bitopological Spaces: Theory, Relations with Generalized Algebraic Structures, and Applications, North-Holland, 2005 | MR | Zbl

[39] de Groot J., “Superextensions and supercompactness”, Proc. I Int. Symp. "Extension Theory of Topological Structures and Its Applications, VEB Deutscher Verlag, Berlin, 1969, 89–90 | MR

[40] van Mill J., Supercompactness and Wallman Spaces, Math. Center Tract, Amsterdam, 1977 | MR | Zbl

[41] Strok M., Szymanski A., “Compact metric spaces have binary subbases”, Fund. Math., 89:1 (1975), 81–91 | DOI | MR | Zbl