Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2022_208_a7, author = {M. I. Sumin}, title = {The {Lagrange} principle and the {Pontryagin} maximum principle in ill-posed optimal control problems}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {63--78}, publisher = {mathdoc}, volume = {208}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2022_208_a7/} }
TY - JOUR AU - M. I. Sumin TI - The Lagrange principle and the Pontryagin maximum principle in ill-posed optimal control problems JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2022 SP - 63 EP - 78 VL - 208 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2022_208_a7/ LA - ru ID - INTO_2022_208_a7 ER -
%0 Journal Article %A M. I. Sumin %T The Lagrange principle and the Pontryagin maximum principle in ill-posed optimal control problems %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2022 %P 63-78 %V 208 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2022_208_a7/ %G ru %F INTO_2022_208_a7
M. I. Sumin. The Lagrange principle and the Pontryagin maximum principle in ill-posed optimal control problems. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Spring Mathematical School "Modern Methods of the Theory of Boundary-Value Problems. Pontryagin Readings – XXXII”, Voronezh, May 3–9, 2021, Part 1, Tome 208 (2022), pp. 63-78. http://geodesic.mathdoc.fr/item/INTO_2022_208_a7/
[1] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimalnoe upravlenie, Nauka, M., 1979 | MR
[2] Besov O. V., Ilin V.P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | MR
[3] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977
[4] Vasilev F. P., Metody optimizatsii, MTsNMO, M., 2011
[5] Gaevskii G., Greger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Nauka, M., 1978
[6] Gamkrelidze R. V., “Matematicheskie raboty L. S. Pontryagina”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obzory., 60 (1998), 5–23 | Zbl
[7] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1984 | MR
[8] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967 | MR
[9] Osipov Yu. S., Vasilev F. P., Potapov M. M., Osnovy metoda dinamicheskoi regulyarizatsii, Izd-vo MGU, M., 1999
[10] Plotnikov V. I., “Teoremy edinstvennosti, suschestvovaniya i apriornye svoistva obobschennykh reshenii”, Dokl. AN SSSR., 165:1 (1965), 33–35 | Zbl
[11] Sumin M. I., “O regulyarizatsii klassicheskikh uslovii optimalnosti v vypuklom optimalnom upravlenii”, Itogi nauki i tekhn. Ser. Sovr. mat. prilozh. Temat. obz., 207 (2022), 120–143
[12] Sumin M. I., “Regulyarizovannye printsip Lagranzha i printsip maksimuma Pontryagina v optimalnom upravlenii i obratnykh zadachakh”, Tr. In-ta mat. mekh. UrO RAN., 25:1 (2019), 279–296 | MR
[13] Sumin M. I., “Regulyarizovannaya parametricheskaya teorema Kuna—Takkera v gilbertovom prostranstve”, Zh. vychisl. mat. mat. fiz., 51:9 (2011), 1594–1615 | MR | Zbl
[14] Sumin M. I., “O regulyarizatsii klassicheskikh uslovii optimalnosti v vypuklykh zadachakh optimalnogo upravleniya”, Tr. In-ta mat. mekh. UrO RAN., 26:2 (2020), 252–269 | MR
[15] Sumin M. I., “Dvoistvennaya regulyarizatsiya i printsip maksimuma Pontryagina v zadache optimalnogo granichnogo upravleniya dlya parabolicheskogo uravneniya s nedifferentsiruemymi funktsionalami”, Tr. In-ta mat. mekh. UrO RAN., 17:1 (2011), 229–244 | Zbl
[16] Sumin M. I., “Regulyarizovannyi gradientnyi dvoistvennyi metod resheniya obratnoi zadachi finalnogo nablyudeniya dlya parabolicheskogo uravneniya”, Zh. vychisl. mat. mat. fiz., 44:11 (2004), 2001–2019 | MR | Zbl
[17] Sumin M. I., “Regulyarizatsiya v lineino vypukloi zadache matematicheskogo programmirovaniya na osnove teorii dvoistvennosti”, Zh. vychisl. mat. mat. fiz., 47:4 (2007), 602–625 | MR | Zbl
[18] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1986
[19] Casas E., “Pontryagin's principle for state-constrained boundary control problems of semilinear parabolic equations”, SIAM J. Control Optim., 35 (1997), 1297–1327 | DOI | MR | Zbl
[20] Casas E., Raymond J.-P., Zidani H., “Pontryagin's principle for local solutions of control problems with mixed control-state constraints”, SIAM J. Control Optim., 39:4 (2000), 1182–1203 | DOI | MR | Zbl
[21] Raymond J.-P., Zidani H., “Hamiltonian Pontryagin's principles for control problems governed by semilinear parabolic equations”, Appl. Math. Optim., 39:2 (1999), 143–177 | DOI | MR | Zbl
[22] Raymond J.-P., Zidani H., “Pontryagin's principle for state-constrained control problems governed by parabolic equations with unbounded controls”, SIAM J. Control Optim., 36:6 (1998), 1853–1879 | DOI | MR | Zbl