The Lagrange principle and the Pontryagin maximum principle in ill-posed optimal control problems
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Spring Mathematical School "Modern Methods of the Theory of Boundary-Value Problems. Pontryagin Readings – XXXII”, Voronezh, May 3–9, 2021, Part 1, Tome 208 (2022), pp. 63-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the regularization of the classical optimality conditions—the Lagrange principle and the Pontryagin maximum principle—in a convex optimal control problem for a parabolic equation with distributed and boundary controls, and also with a finite number functional equality constraints given by ‘`point’ functionals nondifferentiable in the Fréchet sense, which are the values of the solution of the third initial-boundary-value problem for the specified equation at preselected fixed (possibly boundary) points of the cylindrical domain of the independent variables.
Keywords: convex optimal control, boundary control, Fréchet nondifferentiable functional, Steklov averaging, minimizing sequence, dual regularization, regularizing algorithm, Lagrange principle, Pontryagin maximum principle.
Mots-clés : parabolic equation
@article{INTO_2022_208_a7,
     author = {M. I. Sumin},
     title = {The {Lagrange} principle and the {Pontryagin} maximum principle in ill-posed optimal control problems},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {63--78},
     publisher = {mathdoc},
     volume = {208},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_208_a7/}
}
TY  - JOUR
AU  - M. I. Sumin
TI  - The Lagrange principle and the Pontryagin maximum principle in ill-posed optimal control problems
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 63
EP  - 78
VL  - 208
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_208_a7/
LA  - ru
ID  - INTO_2022_208_a7
ER  - 
%0 Journal Article
%A M. I. Sumin
%T The Lagrange principle and the Pontryagin maximum principle in ill-posed optimal control problems
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 63-78
%V 208
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_208_a7/
%G ru
%F INTO_2022_208_a7
M. I. Sumin. The Lagrange principle and the Pontryagin maximum principle in ill-posed optimal control problems. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Spring Mathematical School "Modern Methods of the Theory of Boundary-Value Problems. Pontryagin Readings – XXXII”, Voronezh, May 3–9, 2021, Part 1, Tome 208 (2022), pp. 63-78. http://geodesic.mathdoc.fr/item/INTO_2022_208_a7/

[1] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimalnoe upravlenie, Nauka, M., 1979 | MR

[2] Besov O. V., Ilin V.P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | MR

[3] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977

[4] Vasilev F. P., Metody optimizatsii, MTsNMO, M., 2011

[5] Gaevskii G., Greger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Nauka, M., 1978

[6] Gamkrelidze R. V., “Matematicheskie raboty L. S. Pontryagina”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obzory., 60 (1998), 5–23 | Zbl

[7] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1984 | MR

[8] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967 | MR

[9] Osipov Yu. S., Vasilev F. P., Potapov M. M., Osnovy metoda dinamicheskoi regulyarizatsii, Izd-vo MGU, M., 1999

[10] Plotnikov V. I., “Teoremy edinstvennosti, suschestvovaniya i apriornye svoistva obobschennykh reshenii”, Dokl. AN SSSR., 165:1 (1965), 33–35 | Zbl

[11] Sumin M. I., “O regulyarizatsii klassicheskikh uslovii optimalnosti v vypuklom optimalnom upravlenii”, Itogi nauki i tekhn. Ser. Sovr. mat. prilozh. Temat. obz., 207 (2022), 120–143

[12] Sumin M. I., “Regulyarizovannye printsip Lagranzha i printsip maksimuma Pontryagina v optimalnom upravlenii i obratnykh zadachakh”, Tr. In-ta mat. mekh. UrO RAN., 25:1 (2019), 279–296 | MR

[13] Sumin M. I., “Regulyarizovannaya parametricheskaya teorema Kuna—Takkera v gilbertovom prostranstve”, Zh. vychisl. mat. mat. fiz., 51:9 (2011), 1594–1615 | MR | Zbl

[14] Sumin M. I., “O regulyarizatsii klassicheskikh uslovii optimalnosti v vypuklykh zadachakh optimalnogo upravleniya”, Tr. In-ta mat. mekh. UrO RAN., 26:2 (2020), 252–269 | MR

[15] Sumin M. I., “Dvoistvennaya regulyarizatsiya i printsip maksimuma Pontryagina v zadache optimalnogo granichnogo upravleniya dlya parabolicheskogo uravneniya s nedifferentsiruemymi funktsionalami”, Tr. In-ta mat. mekh. UrO RAN., 17:1 (2011), 229–244 | Zbl

[16] Sumin M. I., “Regulyarizovannyi gradientnyi dvoistvennyi metod resheniya obratnoi zadachi finalnogo nablyudeniya dlya parabolicheskogo uravneniya”, Zh. vychisl. mat. mat. fiz., 44:11 (2004), 2001–2019 | MR | Zbl

[17] Sumin M. I., “Regulyarizatsiya v lineino vypukloi zadache matematicheskogo programmirovaniya na osnove teorii dvoistvennosti”, Zh. vychisl. mat. mat. fiz., 47:4 (2007), 602–625 | MR | Zbl

[18] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1986

[19] Casas E., “Pontryagin's principle for state-constrained boundary control problems of semilinear parabolic equations”, SIAM J. Control Optim., 35 (1997), 1297–1327 | DOI | MR | Zbl

[20] Casas E., Raymond J.-P., Zidani H., “Pontryagin's principle for local solutions of control problems with mixed control-state constraints”, SIAM J. Control Optim., 39:4 (2000), 1182–1203 | DOI | MR | Zbl

[21] Raymond J.-P., Zidani H., “Hamiltonian Pontryagin's principles for control problems governed by semilinear parabolic equations”, Appl. Math. Optim., 39:2 (1999), 143–177 | DOI | MR | Zbl

[22] Raymond J.-P., Zidani H., “Pontryagin's principle for state-constrained control problems governed by parabolic equations with unbounded controls”, SIAM J. Control Optim., 36:6 (1998), 1853–1879 | DOI | MR | Zbl