The Lagrange principle and the Pontryagin maximum principle in ill-posed optimal control problems
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Spring Mathematical School "Modern Methods of the Theory of Boundary-Value Problems. Pontryagin Readings – XXXII”, Voronezh, May 3–9, 2021, Part 1, Tome 208 (2022), pp. 63-78

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the regularization of the classical optimality conditions—the Lagrange principle and the Pontryagin maximum principle—in a convex optimal control problem for a parabolic equation with distributed and boundary controls, and also with a finite number functional equality constraints given by ‘`point’ functionals nondifferentiable in the Fréchet sense, which are the values of the solution of the third initial-boundary-value problem for the specified equation at preselected fixed (possibly boundary) points of the cylindrical domain of the independent variables.
Keywords: convex optimal control, boundary control, Fréchet nondifferentiable functional, Steklov averaging, minimizing sequence, dual regularization, regularizing algorithm, Lagrange principle, Pontryagin maximum principle.
Mots-clés : parabolic equation
@article{INTO_2022_208_a7,
     author = {M. I. Sumin},
     title = {The {Lagrange} principle and the {Pontryagin} maximum principle in ill-posed optimal control problems},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {63--78},
     publisher = {mathdoc},
     volume = {208},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_208_a7/}
}
TY  - JOUR
AU  - M. I. Sumin
TI  - The Lagrange principle and the Pontryagin maximum principle in ill-posed optimal control problems
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 63
EP  - 78
VL  - 208
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_208_a7/
LA  - ru
ID  - INTO_2022_208_a7
ER  - 
%0 Journal Article
%A M. I. Sumin
%T The Lagrange principle and the Pontryagin maximum principle in ill-posed optimal control problems
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 63-78
%V 208
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_208_a7/
%G ru
%F INTO_2022_208_a7
M. I. Sumin. The Lagrange principle and the Pontryagin maximum principle in ill-posed optimal control problems. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Spring Mathematical School "Modern Methods of the Theory of Boundary-Value Problems. Pontryagin Readings – XXXII”, Voronezh, May 3–9, 2021, Part 1, Tome 208 (2022), pp. 63-78. http://geodesic.mathdoc.fr/item/INTO_2022_208_a7/