Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2022_208_a4, author = {E. V. Korablina and V. B. Levenshtam}, title = {Asymptotic problem of restoring the high-frequency right-hand side of the telegraph equation}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {29--36}, publisher = {mathdoc}, volume = {208}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2022_208_a4/} }
TY - JOUR AU - E. V. Korablina AU - V. B. Levenshtam TI - Asymptotic problem of restoring the high-frequency right-hand side of the telegraph equation JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2022 SP - 29 EP - 36 VL - 208 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2022_208_a4/ LA - ru ID - INTO_2022_208_a4 ER -
%0 Journal Article %A E. V. Korablina %A V. B. Levenshtam %T Asymptotic problem of restoring the high-frequency right-hand side of the telegraph equation %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2022 %P 29-36 %V 208 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2022_208_a4/ %G ru %F INTO_2022_208_a4
E. V. Korablina; V. B. Levenshtam. Asymptotic problem of restoring the high-frequency right-hand side of the telegraph equation. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Spring Mathematical School "Modern Methods of the Theory of Boundary-Value Problems. Pontryagin Readings – XXXII”, Voronezh, May 3–9, 2021, Part 1, Tome 208 (2022), pp. 29-36. http://geodesic.mathdoc.fr/item/INTO_2022_208_a4/
[3] Babich P. V., Levenshtam V. B., “Vosstanovlenie bystro ostsilliruyuschego svobodnogo chlena v mnogomernom giperbolicheskom uravnenii”, Mat. zametki., 104:4 (2018), 489–497 | Zbl
[4] Babich P. V., Levenshtam V. B., Prika S. P., “Vosstanovlenie bystro ostsilliruyuschego istochnika v uravnenii teploprovodnosti po asimptotike resheniya”, Zh. vychisl. mat. mat. fiz., 57:12 (2017), 1955–1965 | Zbl
[5] Vatulyan A. O., Obratnye zadachi v mekhanike deformiruemogo tverdogo tela, Fizmatlit, M., 2007
[6] Denisov A. M., Vvedenie v teoriyu obratnykh zadach, Nauka, M., 1994
[7] Kabanikhin S. I., Obratnye i nekorrektnye zadachi, Novosibirsk, 2008
[8] Lavretev M. M., Reznitskaya K. G., Yakhno V. G., Odnomernye obratnye zadachi matematicheskoi fiziki, Nauka, Novosibirsk, 1982 | MR
[9] Levenshtam V. B., “Metod usredneniya v zadache konvektsii pri vysokochastotnykh naklonnykh vibratsiyakh”, Sib. mat. zh., 37:5 (1996), 1103–1116 | MR | Zbl
[10] Levenshtam V. B., “Asimptoticheskoe integrirovanie zadachi o vibratsionnoi konvektsii”, Differ. uravn., 34:4 (1998), 523–532 | MR | Zbl
[11] Levenshtam V. B., “Asimptoticheskoe razlozhenie resheniya zadachi o vibratsionnoi konvektsii”, Zh. vychisl. mat. mat. fiz., 40:9 (2000), 1416–1424 | MR | Zbl
[12] Levenshtam V. B., “Parabolicheskie uravneniya s bolshim parametrom. Obratnye zadachi”, Mat. zametki., 107:3 (2020), 412–425 | MR | Zbl
[13] Romanov V. G., Obratnye zadachi matematicheskoi fiziki, Nauka, M., 1984 | MR
[14] Simonenko I. B., “Obosnovanie metoda usredneniya dlya zadachi konvektsii v pole bystro ostsilliruyuschikh sil i dlya drugikh parabolicheskikh uranenii”, Mat. sb., 87:2 (1972), 236–253 | Zbl
[15] Babich P. V., Levenshtam V. B., “Direct and inverse asymptotic problems high-frequency terms”, Asympt. Anal., 97 (2016), 329–336 | MR | Zbl
[16] Babich P. V., Levenshtam V. B., “Inverse problem in the multidimensional hyperbolic equation with rapidly oscillating absolute term”, Operator Theory and Differential Equations, eds. Kusraev A. G., Totieva Zh. D., Birkhäuser, 2021, 7–25 | DOI | MR
[17] Prilepko A. U., Orlovsky D. G., Vasin I. A., Methods for Solving Inverse Problems in Mathematical Physics, Marsel Dekker, New York, 2000 | MR | Zbl