Asymptotic problem of restoring the high-frequency right-hand side of the telegraph equation
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Spring Mathematical School "Modern Methods of the Theory of Boundary-Value Problems. Pontryagin Readings – XXXII”, Voronezh, May 3–9, 2021, Part 1, Tome 208 (2022), pp. 29-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider the Cauchy problem for the telegraph equation. The lower coefficient and the right-hand side of the equation oscillate in time with a high frequency, the amplitude of the lower coefficient is small, namely, is inversely proportional to the frequency, and the right-hand side is unknown. We examine the problem on the recovery of the right-hand side from the three-term asymptotics of the solution given at some point in space. For this purpose, we use a nonclassical algorithm for solving inverse coefficient problems with rapidly oscillating data.
Keywords: inverse problem, asymptotic methods, telegraph equation, rapidly oscillating data.
@article{INTO_2022_208_a4,
     author = {E. V. Korablina and V. B. Levenshtam},
     title = {Asymptotic problem of restoring the high-frequency right-hand side of the telegraph equation},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {29--36},
     publisher = {mathdoc},
     volume = {208},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_208_a4/}
}
TY  - JOUR
AU  - E. V. Korablina
AU  - V. B. Levenshtam
TI  - Asymptotic problem of restoring the high-frequency right-hand side of the telegraph equation
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 29
EP  - 36
VL  - 208
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_208_a4/
LA  - ru
ID  - INTO_2022_208_a4
ER  - 
%0 Journal Article
%A E. V. Korablina
%A V. B. Levenshtam
%T Asymptotic problem of restoring the high-frequency right-hand side of the telegraph equation
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 29-36
%V 208
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_208_a4/
%G ru
%F INTO_2022_208_a4
E. V. Korablina; V. B. Levenshtam. Asymptotic problem of restoring the high-frequency right-hand side of the telegraph equation. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Spring Mathematical School "Modern Methods of the Theory of Boundary-Value Problems. Pontryagin Readings – XXXII”, Voronezh, May 3–9, 2021, Part 1, Tome 208 (2022), pp. 29-36. http://geodesic.mathdoc.fr/item/INTO_2022_208_a4/

[3] Babich P. V., Levenshtam V. B., “Vosstanovlenie bystro ostsilliruyuschego svobodnogo chlena v mnogomernom giperbolicheskom uravnenii”, Mat. zametki., 104:4 (2018), 489–497 | Zbl

[4] Babich P. V., Levenshtam V. B., Prika S. P., “Vosstanovlenie bystro ostsilliruyuschego istochnika v uravnenii teploprovodnosti po asimptotike resheniya”, Zh. vychisl. mat. mat. fiz., 57:12 (2017), 1955–1965 | Zbl

[5] Vatulyan A. O., Obratnye zadachi v mekhanike deformiruemogo tverdogo tela, Fizmatlit, M., 2007

[6] Denisov A. M., Vvedenie v teoriyu obratnykh zadach, Nauka, M., 1994

[7] Kabanikhin S. I., Obratnye i nekorrektnye zadachi, Novosibirsk, 2008

[8] Lavretev M. M., Reznitskaya K. G., Yakhno V. G., Odnomernye obratnye zadachi matematicheskoi fiziki, Nauka, Novosibirsk, 1982 | MR

[9] Levenshtam V. B., “Metod usredneniya v zadache konvektsii pri vysokochastotnykh naklonnykh vibratsiyakh”, Sib. mat. zh., 37:5 (1996), 1103–1116 | MR | Zbl

[10] Levenshtam V. B., “Asimptoticheskoe integrirovanie zadachi o vibratsionnoi konvektsii”, Differ. uravn., 34:4 (1998), 523–532 | MR | Zbl

[11] Levenshtam V. B., “Asimptoticheskoe razlozhenie resheniya zadachi o vibratsionnoi konvektsii”, Zh. vychisl. mat. mat. fiz., 40:9 (2000), 1416–1424 | MR | Zbl

[12] Levenshtam V. B., “Parabolicheskie uravneniya s bolshim parametrom. Obratnye zadachi”, Mat. zametki., 107:3 (2020), 412–425 | MR | Zbl

[13] Romanov V. G., Obratnye zadachi matematicheskoi fiziki, Nauka, M., 1984 | MR

[14] Simonenko I. B., “Obosnovanie metoda usredneniya dlya zadachi konvektsii v pole bystro ostsilliruyuschikh sil i dlya drugikh parabolicheskikh uranenii”, Mat. sb., 87:2 (1972), 236–253 | Zbl

[15] Babich P. V., Levenshtam V. B., “Direct and inverse asymptotic problems high-frequency terms”, Asympt. Anal., 97 (2016), 329–336 | MR | Zbl

[16] Babich P. V., Levenshtam V. B., “Inverse problem in the multidimensional hyperbolic equation with rapidly oscillating absolute term”, Operator Theory and Differential Equations, eds. Kusraev A. G., Totieva Zh. D., Birkhäuser, 2021, 7–25 | DOI | MR

[17] Prilepko A. U., Orlovsky D. G., Vasin I. A., Methods for Solving Inverse Problems in Mathematical Physics, Marsel Dekker, New York, 2000 | MR | Zbl