Flows in networks with barrier reachability
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Spring Mathematical School "Modern Methods of the Theory of Boundary-Value Problems. Pontryagin Readings – XXXII”, Voronezh, May 3–9, 2021, Part 1, Tome 208 (2022), pp. 24-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of flows in networks with barrier-type reachability restrictions is considered. We introduce new definitions that allow one to describe a flow in a network with reachability constraints, in particular, a representation of a flow as a vector-valued function. Conditions for preserving the flow and restricting the maximum flow along an arc are formulated in terms of vector-valued functions. This allows one to consider flow problems without passing to an unfolding, which is a graph with connected arcs.
Keywords: graph theory, nonstandard reachability, barrier reachability, network, flow in network, breakthrough algorithm.
@article{INTO_2022_208_a3,
     author = {I. M. Erusalimskyi and V. A. Skorokhodov and V. A. Rusakov},
     title = {Flows in networks with barrier reachability},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {24--28},
     publisher = {mathdoc},
     volume = {208},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_208_a3/}
}
TY  - JOUR
AU  - I. M. Erusalimskyi
AU  - V. A. Skorokhodov
AU  - V. A. Rusakov
TI  - Flows in networks with barrier reachability
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 24
EP  - 28
VL  - 208
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_208_a3/
LA  - ru
ID  - INTO_2022_208_a3
ER  - 
%0 Journal Article
%A I. M. Erusalimskyi
%A V. A. Skorokhodov
%A V. A. Rusakov
%T Flows in networks with barrier reachability
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 24-28
%V 208
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_208_a3/
%G ru
%F INTO_2022_208_a3
I. M. Erusalimskyi; V. A. Skorokhodov; V. A. Rusakov. Flows in networks with barrier reachability. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Spring Mathematical School "Modern Methods of the Theory of Boundary-Value Problems. Pontryagin Readings – XXXII”, Voronezh, May 3–9, 2021, Part 1, Tome 208 (2022), pp. 24-28. http://geodesic.mathdoc.fr/item/INTO_2022_208_a3/

[1] Vodolazov N. N., Erusalimskii Ya. M., “$NP$"-Polnota zadachi nakhozhdeniya maksimalnogo potoka v grafakh s dopolnitelnymi ogranicheniyami na dostizhimost”, Mat. Voronezh. vesennei mat. shkoly «Sovremennye metody teorii kraevykh zadach. Pontryaginskie chteniya–KhKhI», Izd-vo VGU, Voronezh, 2010, 14–15

[2] Erusalimskii Ya. M., “Potoki v setyakh s nestandartnoi dostizhimostyu”, Izv. vuzov. Sev.-Kav. reg. Estestv. nauki., 2012, no. 1, 17–21

[3] Erusalimskii Ya. M., Skorokhodov V. A., “Obschii podkhod k nestandartnoi dostizhimosti na orientirovannykh grafakh”, Izv. vuzov. Sev.-Kav. reg. Estestv. nauki. Psevdodifferentsialnye uravneniya i nekotorye problemy matematicheskoi fiziki., 2005, 64–67

[4] Erusalimskii Ya. M., Skorokhodov V. A., “Potoki v setyakh so svyazannymi dugami”, Izv. vuzov. Sev.-Kav. reg. Estestv. nauki. Prilozh., 2003, no. 8, 9–12 | Zbl

[5] Erusalimskii Ya. M., Skorokhodov V. A., Petrosyan A. G., Kuzminova M. V., Grafy s nestandartnoi dostizhimostyu: zadachi, prilozheniya, Yuzhnyi federalnyi un-t, Rostov-na-Donu, 2009

[6] Ford L. R., Falkerson D. R., Potoki v setyakh, Mir, M., 1966

[7] Erusalimskiy I. M., Skorokhodov V. A., “On flows in networks with reachability restrictions”, J. Phys. Conf. Ser., 1902 (2021), 012063 | DOI