Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2022_207_a6, author = {B. V. Konoplev}, title = {Equiconvergence and equisummability almost everywhere of a multiple orthogonal series for various types of convergence}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {61--67}, publisher = {mathdoc}, volume = {207}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2022_207_a6/} }
TY - JOUR AU - B. V. Konoplev TI - Equiconvergence and equisummability almost everywhere of a multiple orthogonal series for various types of convergence JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2022 SP - 61 EP - 67 VL - 207 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2022_207_a6/ LA - ru ID - INTO_2022_207_a6 ER -
%0 Journal Article %A B. V. Konoplev %T Equiconvergence and equisummability almost everywhere of a multiple orthogonal series for various types of convergence %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2022 %P 61-67 %V 207 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2022_207_a6/ %G ru %F INTO_2022_207_a6
B. V. Konoplev. Equiconvergence and equisummability almost everywhere of a multiple orthogonal series for various types of convergence. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Winter Mathematical School "Modern Methods of Function Theory and Related Problems", Voronezh, January 28 - February 2, 2021, Part 2, Tome 207 (2022), pp. 61-67. http://geodesic.mathdoc.fr/item/INTO_2022_207_a6/
[1] Aleksich G., Problemy skhodimosti ortogonalnykh ryadov, IL, M., 1963
[2] Alimov Sh. A., Ilin V. A., Nikishin E. M., “Voprosy skhodimosti kratnykh ortogonalnykh ryadov i spektralnykh razlozhenii, I”, Usp. mat. nauk., 31:6 (1976), 28–83 | MR | Zbl
[3] Bari N. K., Trigonometricheskie ryady, M., 1964
[4] Buadze A. I., “O raskhodimosti sfericheskikh chastnykh summ kratnykh ryadov Fure”, Soobsch. AN Gruz. SSR., 84:3 (1976), 561–563
[5] Ilin V. A., “O summiruemosti ryadov Fure po sobstvennym funktsiyam srednimi Rissa, Chezaro i Puassona—Abelya”, Differ. uravn., 2:6 (1966), 816–827 | Zbl
[6] Ilin V. A., Sadovnichii V. A., Sendov Bl. Kh., Matematicheskii analiz, Izd-vo MGU, M., 1985 | MR
[7] Kassels Dzh. V. S., Vvedenie v geometriyu chisel, Mir, M., 1965
[8] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1989 | MR
[9] Konoplev B. V., “O ravnosummiruemosti pochti vsyudu kratnykh ortogonalnykh ryadov”, Mat. mezhdunar. konf. «Sovremennye metody teorii funktsii i smezhnye problemy. Voronezhskaya zimnyaya matematicheskaya shkola» (Voronezh, 28 yanvarya —2 fevralya 2021 g.), Voronezh, 2021, 146–148
[10] Malyshev A. V., “Osnovnye ponyatiya i teoremy geometrii chisel”, Chebyshev. sb., 20:3 (2019), 44–73 | MR
[11] Nakhman A. D., O srednikh treugolnogo tipa dvoinykh ryadov Fure, Dep. v VINITI, #1907-79 Dep
[12] Tevzadze N. R., “O skhodimosti dvoinogo ryada Fure funktsii, summiruemoi s kvadratom”, Soobsch. AN Gruz. SSR., 58:2 (1970), 277–279 | Zbl
[13] Carleson L., “On convergence and growth of partial sums of Fourier series”, Acta Math., 116:1-2 (1966), 135–157 | DOI | MR | Zbl
[14] Hunt R. A., “On the convergence of Fourier series”, Proc. Conf. “Ortogonal Expansions and Their Continuous Analogues”, South Illinois Univ. Press, Carbndale, Illinois, 1968, 235–255 | MR | Zbl
[15] Kojima M., “On the almost everywhere convergence of lacunary spherical partial sums of multiple Fourier series”, Sci. Rep. Kanazawa Univ., 24:1 (1979), 9–12 | MR | Zbl
[16] Sjölin P., “Convergence almost everywhere of certain singular integrals and multiple Fourier series”, Arkiv Mat., 9:1 (1971), 65–90 | DOI | MR | Zbl