Equiconvergence and equisummability almost everywhere of a multiple orthogonal series for various types of convergence
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Winter Mathematical School "Modern Methods of Function Theory and Related Problems", Voronezh, January 28 - February 2, 2021, Part 2, Tome 207 (2022), pp. 61-67.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we obtain coefficient conditions that guarantee the equiconvergence and Cesaro equisummability almost everywhere of a multiple orthogonal series summed over two different systems of nested sets covering an integer lattice of the arithmetic space.
Keywords: multiple orthogonal series, partial sum, Cesaro mean, convergence almost everywhere, summability almost everywhere, star body, homothety, multiple trigonomrtric series.
@article{INTO_2022_207_a6,
     author = {B. V. Konoplev},
     title = {Equiconvergence and equisummability almost everywhere of a multiple orthogonal series for various types of convergence},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {61--67},
     publisher = {mathdoc},
     volume = {207},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_207_a6/}
}
TY  - JOUR
AU  - B. V. Konoplev
TI  - Equiconvergence and equisummability almost everywhere of a multiple orthogonal series for various types of convergence
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 61
EP  - 67
VL  - 207
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_207_a6/
LA  - ru
ID  - INTO_2022_207_a6
ER  - 
%0 Journal Article
%A B. V. Konoplev
%T Equiconvergence and equisummability almost everywhere of a multiple orthogonal series for various types of convergence
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 61-67
%V 207
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_207_a6/
%G ru
%F INTO_2022_207_a6
B. V. Konoplev. Equiconvergence and equisummability almost everywhere of a multiple orthogonal series for various types of convergence. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Winter Mathematical School "Modern Methods of Function Theory and Related Problems", Voronezh, January 28 - February 2, 2021, Part 2, Tome 207 (2022), pp. 61-67. http://geodesic.mathdoc.fr/item/INTO_2022_207_a6/

[1] Aleksich G., Problemy skhodimosti ortogonalnykh ryadov, IL, M., 1963

[2] Alimov Sh. A., Ilin V. A., Nikishin E. M., “Voprosy skhodimosti kratnykh ortogonalnykh ryadov i spektralnykh razlozhenii, I”, Usp. mat. nauk., 31:6 (1976), 28–83 | MR | Zbl

[3] Bari N. K., Trigonometricheskie ryady, M., 1964

[4] Buadze A. I., “O raskhodimosti sfericheskikh chastnykh summ kratnykh ryadov Fure”, Soobsch. AN Gruz. SSR., 84:3 (1976), 561–563

[5] Ilin V. A., “O summiruemosti ryadov Fure po sobstvennym funktsiyam srednimi Rissa, Chezaro i Puassona—Abelya”, Differ. uravn., 2:6 (1966), 816–827 | Zbl

[6] Ilin V. A., Sadovnichii V. A., Sendov Bl. Kh., Matematicheskii analiz, Izd-vo MGU, M., 1985 | MR

[7] Kassels Dzh. V. S., Vvedenie v geometriyu chisel, Mir, M., 1965

[8] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1989 | MR

[9] Konoplev B. V., “O ravnosummiruemosti pochti vsyudu kratnykh ortogonalnykh ryadov”, Mat. mezhdunar. konf. «Sovremennye metody teorii funktsii i smezhnye problemy. Voronezhskaya zimnyaya matematicheskaya shkola» (Voronezh, 28 yanvarya —2 fevralya 2021 g.), Voronezh, 2021, 146–148

[10] Malyshev A. V., “Osnovnye ponyatiya i teoremy geometrii chisel”, Chebyshev. sb., 20:3 (2019), 44–73 | MR

[11] Nakhman A. D., O srednikh treugolnogo tipa dvoinykh ryadov Fure, Dep. v VINITI, #1907-79 Dep

[12] Tevzadze N. R., “O skhodimosti dvoinogo ryada Fure funktsii, summiruemoi s kvadratom”, Soobsch. AN Gruz. SSR., 58:2 (1970), 277–279 | Zbl

[13] Carleson L., “On convergence and growth of partial sums of Fourier series”, Acta Math., 116:1-2 (1966), 135–157 | DOI | MR | Zbl

[14] Hunt R. A., “On the convergence of Fourier series”, Proc. Conf. “Ortogonal Expansions and Their Continuous Analogues”, South Illinois Univ. Press, Carbndale, Illinois, 1968, 235–255 | MR | Zbl

[15] Kojima M., “On the almost everywhere convergence of lacunary spherical partial sums of multiple Fourier series”, Sci. Rep. Kanazawa Univ., 24:1 (1979), 9–12 | MR | Zbl

[16] Sjölin P., “Convergence almost everywhere of certain singular integrals and multiple Fourier series”, Arkiv Mat., 9:1 (1971), 65–90 | DOI | MR | Zbl