Asymptotic estimates for the solution of the Cauchy problem for a differential equation with linear degeneration
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Winter Mathematical School "Modern Methods of Function Theory and Related Problems", Voronezh, January 28 - February 2, 2021, Part 2, Tome 207 (2022), pp. 37-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

Application of the method of separation of variables to problems for the linearly degenerate equation $u''_{xx}+yu''_{yy}+c(y)u'_y-a(x)u=f(x,y)$ in a rectangle leads to problems for the singularly perturbed ordinary differential equation with degeneration $yY''+c(y)Y'-(\pi^2k^2+a(y))Y=f_k(y)$, $k\in\mathbb{N}$. In this paper, we examine the asymptotic behavior of solutions of this equation with given initial data at $0$ and zero right-hand side as $k\to+\infty$ and obtain the leading term of the asymptotics in the explicit form.
Keywords: degenerate differential equation, singularly perturbed differential equation.
@article{INTO_2022_207_a4,
     author = {D. P. Emel'yanov and I. S. Lomov},
     title = {Asymptotic estimates for the solution of the {Cauchy} problem for a differential equation with linear degeneration},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {37--47},
     publisher = {mathdoc},
     volume = {207},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_207_a4/}
}
TY  - JOUR
AU  - D. P. Emel'yanov
AU  - I. S. Lomov
TI  - Asymptotic estimates for the solution of the Cauchy problem for a differential equation with linear degeneration
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 37
EP  - 47
VL  - 207
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_207_a4/
LA  - ru
ID  - INTO_2022_207_a4
ER  - 
%0 Journal Article
%A D. P. Emel'yanov
%A I. S. Lomov
%T Asymptotic estimates for the solution of the Cauchy problem for a differential equation with linear degeneration
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 37-47
%V 207
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_207_a4/
%G ru
%F INTO_2022_207_a4
D. P. Emel'yanov; I. S. Lomov. Asymptotic estimates for the solution of the Cauchy problem for a differential equation with linear degeneration. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Winter Mathematical School "Modern Methods of Function Theory and Related Problems", Voronezh, January 28 - February 2, 2021, Part 2, Tome 207 (2022), pp. 37-47. http://geodesic.mathdoc.fr/item/INTO_2022_207_a4/

[1] Vasileva A. B., Butuzov V. F., Asimptoticheskoe razlozhenie reshenii singulyarno vozmuschennykh uravnenii, Nauka, M., 1973 | MR

[2] Vatson Dzh. N., Teoriya besselevykh funktsii, IL, M., 1949

[3] Emelyanov D. P., Lomov I. S., “Postroenie tochnykh reshenii neregulyarno vyrozhdayuschikhsya ellipticheskikh uravnenii s analiticheskimi koeffitsientami”, Differ. uravn., 55:1 (2019), 45–58

[4] Keldysh M. V., “O nekotorykh sluchayakh vyrozhdennykh uravnenii ellipticheskogo tipa na granitse oblasti”, Dokl. AN SSSR., 77:2 (1951), 181–183 | Zbl

[5] Keldysh M. V., Izbrannye trudy. Matematika, Nauka, M., 1985 | MR

[6] Levitan B. M., Sargsyan I. S., Vvedenie v spektralnuyu teoriyu (samosopryazhennye obyknovennye differentsialnye operatory, Nauka, M., 1970

[7] Lomov I. S., “Malye znamenateli v analiticheskoi teorii vyrozhdayuschikhsya differentsialnykh uravnenii”, Differ. uravn., 29:12 (1993), 1090–1090 | MR

[8] Lomov I. S., “Metod spektralnogo razdeleniya peremennykh dlya neregulyarno vyrozhdayuschikhsya ellipticheskikh differentsialnykh operatorov”, Dokl. RAN., 376:5 (2001), 593–596 | MR | Zbl

[9] Lomov S. A., Lomov I. S., Osnovy matematicheskoi teorii pogranichnogo sloya, Izd-vo MGU, M., 2011