Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2022_207_a4, author = {D. P. Emel'yanov and I. S. Lomov}, title = {Asymptotic estimates for the solution of the {Cauchy} problem for a differential equation with linear degeneration}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {37--47}, publisher = {mathdoc}, volume = {207}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2022_207_a4/} }
TY - JOUR AU - D. P. Emel'yanov AU - I. S. Lomov TI - Asymptotic estimates for the solution of the Cauchy problem for a differential equation with linear degeneration JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2022 SP - 37 EP - 47 VL - 207 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2022_207_a4/ LA - ru ID - INTO_2022_207_a4 ER -
%0 Journal Article %A D. P. Emel'yanov %A I. S. Lomov %T Asymptotic estimates for the solution of the Cauchy problem for a differential equation with linear degeneration %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2022 %P 37-47 %V 207 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2022_207_a4/ %G ru %F INTO_2022_207_a4
D. P. Emel'yanov; I. S. Lomov. Asymptotic estimates for the solution of the Cauchy problem for a differential equation with linear degeneration. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Winter Mathematical School "Modern Methods of Function Theory and Related Problems", Voronezh, January 28 - February 2, 2021, Part 2, Tome 207 (2022), pp. 37-47. http://geodesic.mathdoc.fr/item/INTO_2022_207_a4/
[1] Vasileva A. B., Butuzov V. F., Asimptoticheskoe razlozhenie reshenii singulyarno vozmuschennykh uravnenii, Nauka, M., 1973 | MR
[2] Vatson Dzh. N., Teoriya besselevykh funktsii, IL, M., 1949
[3] Emelyanov D. P., Lomov I. S., “Postroenie tochnykh reshenii neregulyarno vyrozhdayuschikhsya ellipticheskikh uravnenii s analiticheskimi koeffitsientami”, Differ. uravn., 55:1 (2019), 45–58
[4] Keldysh M. V., “O nekotorykh sluchayakh vyrozhdennykh uravnenii ellipticheskogo tipa na granitse oblasti”, Dokl. AN SSSR., 77:2 (1951), 181–183 | Zbl
[5] Keldysh M. V., Izbrannye trudy. Matematika, Nauka, M., 1985 | MR
[6] Levitan B. M., Sargsyan I. S., Vvedenie v spektralnuyu teoriyu (samosopryazhennye obyknovennye differentsialnye operatory, Nauka, M., 1970
[7] Lomov I. S., “Malye znamenateli v analiticheskoi teorii vyrozhdayuschikhsya differentsialnykh uravnenii”, Differ. uravn., 29:12 (1993), 1090–1090 | MR
[8] Lomov I. S., “Metod spektralnogo razdeleniya peremennykh dlya neregulyarno vyrozhdayuschikhsya ellipticheskikh differentsialnykh operatorov”, Dokl. RAN., 376:5 (2001), 593–596 | MR | Zbl
[9] Lomov S. A., Lomov I. S., Osnovy matematicheskoi teorii pogranichnogo sloya, Izd-vo MGU, M., 2011