On the inverse closedness of the subalgebra of local absolutely summing operators
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Winter Mathematical School "Modern Methods of Function Theory and Related Problems", Voronezh, January 28 - February 2, 2021, Part 2, Tome 207 (2022), pp. 27-36
Voir la notice de l'article provenant de la source Math-Net.Ru
A local absolutely summing operator is an operator $T$ acting in $l_p(\mathbb{Z}^c,X)$, $1\le p\le\infty$, of the form
\begin{equation*}
(Tx)_k=\sum_{m\in\mathbb{Z}^c}b_{km}x_{k-m},
\quad
k\in\mathbb{Z}^c,
\end{equation*}
where $X$ is a Banach space, $b_{km}\colon X\to X$ is an absolutely summation operator, and
\begin{equation*}
\lVert b_{km}\rVert_{\mathbf A\mathbf S(X)}\le\beta_{m}
\end{equation*}
for some $\beta\in l_{1}(\mathbb{Z}^c,\mathbb{C})$, $\lVert\cdot\rVert_{\mathbf{A}\mathbf{S}(X)}$ is the the norm of the ideal of absolutely summing operators. We prove that if the operator $\mathbf{1}+T$ is invertible, then the inverse operator has the form $\mathbf{1}+T_1$, where $T_1$ is also a local absolutely summing operator. A similar assertion is proved for the case where the operator $T$ acts in $L_p(\mathbb{R}^c,\mathbb{C})$, $1\le p\le\infty$.
Keywords:
absolutely summing operator, inversely closed subalgebra, difference operator, convolution operator.
@article{INTO_2022_207_a3,
author = {E. Yu. Guseva},
title = {On the inverse closedness of the subalgebra of local absolutely summing operators},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {27--36},
publisher = {mathdoc},
volume = {207},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2022_207_a3/}
}
TY - JOUR AU - E. Yu. Guseva TI - On the inverse closedness of the subalgebra of local absolutely summing operators JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2022 SP - 27 EP - 36 VL - 207 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2022_207_a3/ LA - ru ID - INTO_2022_207_a3 ER -
%0 Journal Article %A E. Yu. Guseva %T On the inverse closedness of the subalgebra of local absolutely summing operators %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2022 %P 27-36 %V 207 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2022_207_a3/ %G ru %F INTO_2022_207_a3
E. Yu. Guseva. On the inverse closedness of the subalgebra of local absolutely summing operators. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Winter Mathematical School "Modern Methods of Function Theory and Related Problems", Voronezh, January 28 - February 2, 2021, Part 2, Tome 207 (2022), pp. 27-36. http://geodesic.mathdoc.fr/item/INTO_2022_207_a3/