On the inverse closedness of the subalgebra of local absolutely summing operators
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Winter Mathematical School "Modern Methods of Function Theory and Related Problems", Voronezh, January 28 - February 2, 2021, Part 2, Tome 207 (2022), pp. 27-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

A local absolutely summing operator is an operator $T$ acting in $l_p(\mathbb{Z}^c,X)$, $1\le p\le\infty$, of the form \begin{equation*} (Tx)_k=\sum_{m\in\mathbb{Z}^c}b_{km}x_{k-m}, \quad k\in\mathbb{Z}^c, \end{equation*} where $X$ is a Banach space, $b_{km}\colon X\to X$ is an absolutely summation operator, and \begin{equation*} \lVert b_{km}\rVert_{\mathbf A\mathbf S(X)}\le\beta_{m} \end{equation*} for some $\beta\in l_{1}(\mathbb{Z}^c,\mathbb{C})$, $\lVert\cdot\rVert_{\mathbf{A}\mathbf{S}(X)}$ is the the norm of the ideal of absolutely summing operators. We prove that if the operator $\mathbf{1}+T$ is invertible, then the inverse operator has the form $\mathbf{1}+T_1$, where $T_1$ is also a local absolutely summing operator. A similar assertion is proved for the case where the operator $T$ acts in $L_p(\mathbb{R}^c,\mathbb{C})$, $1\le p\le\infty$.
Keywords: absolutely summing operator, inversely closed subalgebra, difference operator, convolution operator.
@article{INTO_2022_207_a3,
     author = {E. Yu. Guseva},
     title = {On the inverse closedness of the subalgebra of local absolutely summing operators},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {27--36},
     publisher = {mathdoc},
     volume = {207},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_207_a3/}
}
TY  - JOUR
AU  - E. Yu. Guseva
TI  - On the inverse closedness of the subalgebra of local absolutely summing operators
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 27
EP  - 36
VL  - 207
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_207_a3/
LA  - ru
ID  - INTO_2022_207_a3
ER  - 
%0 Journal Article
%A E. Yu. Guseva
%T On the inverse closedness of the subalgebra of local absolutely summing operators
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 27-36
%V 207
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_207_a3/
%G ru
%F INTO_2022_207_a3
E. Yu. Guseva. On the inverse closedness of the subalgebra of local absolutely summing operators. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Winter Mathematical School "Modern Methods of Function Theory and Related Problems", Voronezh, January 28 - February 2, 2021, Part 2, Tome 207 (2022), pp. 27-36. http://geodesic.mathdoc.fr/item/INTO_2022_207_a3/

[1] Baskakov A. G., “Teorema Vinera i asimptoticheskie otsenki elementov obratnykh matrits”, Funkts. anal. prilozh., 24:3 (1990), 64–65 | MR | Zbl

[2] Baskakov A. G., “Asimptoticheskie otsenki elementov matrits obratnykh operatorov i garmonicheskii analiz”, Sib. mat. zh., 38:1 (1997), 14–28 | MR | Zbl

[3] Baskakov A. G., “Teoriya predstavlenii banakhovykh algebr, abelevykh grupp i polugrupp v spektralnom analize lineinykh operatorov”, Sovr. mat. Fundam. napravl., 9 (2004), 3–151 | Zbl

[4] Blatov I. A., “Algebra obobschennoi diskretnoi svertki operatorov s ostsilliruyuschimi koeffitsientami”, Dep. v VINITI RAN., \rom{5852-B90} (1990)

[5] Blatov I. A., “O metodakh nepolnoi faktorizatsii dlya sistem s razrezhennymi matritsami”, Zh. vychisl. mat. mat. fiz., 33:6 (1993), 819–836 | MR | Zbl

[6] Blatov I. A., Terteryan A. A., “Ob otsenkakh elementov obratnykh matrits i modernizatsii metoda matrichnoi progonki”, Sib. mat. zh., 32:11 (1992), 1683–1696 | MR | Zbl

[7] Burbaki N., Spektralnaya teoriya, Mir, M., 1972

[8] Burbaki N., Mery na lokalno kompaktnykh prostranstvakh. Prodolzhenie mery. Integrirovanie mer. Mery na otdelimykh prostranstvakh, Nauka, M., 1977

[9] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1977 | MR

[10] Kislyakov S. V., “Absolyutno summiruyuschie operatory na disk-algebre”, Algebra i analiz., 3:4 (1991), 1–77

[11] Kurbatov V. G., Lineinye differentsialno-raznostnye uravneniya, Izd-vo VGU, Voronezh, 1990

[12] Kurbatov V. G., “Ob algebrakh raznostnykh i integralnykh operatorov”, Funkts. anal. prilozh., 24:2 (1990), 87–88 | MR | Zbl

[13] Makarov B. M., “$p$-absolyutno summiruyuschie operatory i nekotorye ikh prilozheniya”, Algebra i analiz., 3:2 (1991), 1–76 | Zbl

[14] Mityagin B. S., “Ob absolyutnoi skhodimosti ryada koeffitsientov Fure”, Dokl. AN SSSR., 157:5 (1964), 1047–1050 | Zbl

[15] Pich A., Operatornye idealy, Mir, M., 1982 | MR

[16] Rudin U., Funktsionalnyi analiz, Mir, M., 1975 | MR

[17] Khelemskii A. Ya., Banakhovy i polinormirovannye algebry: obschaya teoriya, predstavleniya, gomologii, Nauka, M., 1989

[18] Khelemskii A. Ya., Lektsii po funktsionalnomu analizu, MTsNMO, M., 2004

[19] Khille E., Fillips R., Funktsionalnyi analiz i polugruppy, IL, M., 1962 | MR

[20] Belti{ţă} I., Belti{ţă} D., “Erratum to: Inverse-closed algebras of integral operators on locally compact groups”, Ann. H. Poincaré., 16:5 (2015), 1307–1309 | DOI | MR

[21] Belti{ţă} I., Belti{ţă} D., “Inverse-closed algebras of integral operators on locally compact groups”, Ann. H. Poincaré., 16:5 (2015), 1283–1306 | DOI | MR | Zbl

[22] Demko S., “Inverses of band matrices and local convergence of spline projections”, SIAM J. Numer. Anal., 14:4 (1977), 616–619 | DOI | MR | Zbl

[23] Demko S., “Spectral bounds for {$\|A^{-1}\|_\infty$}”, J. Approx. Theory., 48:2 (1986), 207–212 | DOI | MR | Zbl

[24] Demko S., Moss W. F., Smith P. W., “Decay rates for inverses of band matrices”, Math. Comp., 43:168 (1984), 491–499 | DOI | MR | Zbl

[25] Farrell B., Strohmer T., “Inverse-closedness of a Banach algebra of integral operators on the Heisenberg group”, J. Operator Theory., 64:1 (2010), 189–205 | MR | Zbl

[26] Fendler G., Gröchenig K., Leinert M., “Convolution-dominated operators on discrete groups”, Integral Equations Oper. Theory., 61:4 (2008), 493–509 | DOI | MR | Zbl

[27] Fournier J. J. F., Stewart J., “Amalgams of {$L^p$} and {$l^q$}”, Bull. Am. Math. Soc., 13:1 (1985), 1–21 | DOI | MR | Zbl

[28] Gohberg I., Kaashoek M. A., Woerdeman H. J., “The band method for positive and strictly contractive extension problems: an alternative version and new applications”, Integral Equations Oper. Theory., 12:3 (1989), 343–382 | DOI | MR | Zbl

[29] Gröchenig K., “Wiener's lemma: theme and variations. An introduction to spectral invariance”, Four Short Courses on Harmonic Analysis: Wavelets, Frames, Time-Frequency Methods, and Applications to Signal and Image Analysis, Birkhäuser, Boston–Basel–Berlin, 2010, 175–244 | Zbl

[30] Gröchenig K., Klotz A., “Noncommutative approximation: inverse-closed subalgebras and off-diagonal decay of matrices”, Constr. Approx., 32:3 (2010), 429–466 | DOI | MR | Zbl

[31] Gröchenig K., Leinert M., “Symmetry and inverse-closedness of matrix algebras and functional calculus for infinite matrices”, Trans. Am. Math. Soc., 358:6 (2006), 2695–2711 | DOI | MR | Zbl

[32] Grothendieck A., Produits tensoriels topologiques et espaces nucléaires, Am. Math. Soc., Providence, Rhode Island, 1966 | MR

[33] Guseva E. Yu., Kurbatov V. G., Inverse-closedness of the subalgebra of locally nuclear operators, arXiv: 2010.02883 [math.FA]

[34] Jaffard S., “Propriétés des matrices “bien localisées” près de leur diagonale et quelques applications”, Ann. Inst. H. Poincaré. Anal. Non Linéaire., 7:5 (1990), 461–476 | DOI | MR | Zbl

[35] Kurbatov V. G., Functional Differential Operators and Equations, Kluwer Academic, Dordrecht, 1999 | MR | Zbl

[36] Kurbatov V. G., “Some algebras of operators majorized by a convolution”, Funct. Differ. Equations., 8:1 (2001), 323–333 | MR | Zbl

[37] Kurbatov V. G., Kuznetsova V. I., “Inverse-closedness of the set of integral operators with ${L}_1$-continuously varying kernels”, J. Math. Anal. Appl., 436:1 (2016), 322–338 | DOI | MR | Zbl

[38] Schwartz L., “Ordre et type; problèmes d'approximation; applications radonifiantes”, Sémin. L. Schwartz. 1969–1970. — Exp. No. 5. | MR

[39] Sjöstrand J., “Wiener type algebras of pseudodifferential operators”, Sémin. Équations aux Dérivées {P}artielles. 1994–1995. — Exp. No. IV, 21., École Polytech., Palaiseau, 1995