On the inverse closedness of the subalgebra of local absolutely summing operators
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Winter Mathematical School "Modern Methods of Function Theory and Related Problems", Voronezh, January 28 - February 2, 2021, Part 2, Tome 207 (2022), pp. 27-36

Voir la notice de l'article provenant de la source Math-Net.Ru

A local absolutely summing operator is an operator $T$ acting in $l_p(\mathbb{Z}^c,X)$, $1\le p\le\infty$, of the form \begin{equation*} (Tx)_k=\sum_{m\in\mathbb{Z}^c}b_{km}x_{k-m}, \quad k\in\mathbb{Z}^c, \end{equation*} where $X$ is a Banach space, $b_{km}\colon X\to X$ is an absolutely summation operator, and \begin{equation*} \lVert b_{km}\rVert_{\mathbf A\mathbf S(X)}\le\beta_{m} \end{equation*} for some $\beta\in l_{1}(\mathbb{Z}^c,\mathbb{C})$, $\lVert\cdot\rVert_{\mathbf{A}\mathbf{S}(X)}$ is the the norm of the ideal of absolutely summing operators. We prove that if the operator $\mathbf{1}+T$ is invertible, then the inverse operator has the form $\mathbf{1}+T_1$, where $T_1$ is also a local absolutely summing operator. A similar assertion is proved for the case where the operator $T$ acts in $L_p(\mathbb{R}^c,\mathbb{C})$, $1\le p\le\infty$.
Keywords: absolutely summing operator, inversely closed subalgebra, difference operator, convolution operator.
@article{INTO_2022_207_a3,
     author = {E. Yu. Guseva},
     title = {On the inverse closedness of the subalgebra of local absolutely summing operators},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {27--36},
     publisher = {mathdoc},
     volume = {207},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_207_a3/}
}
TY  - JOUR
AU  - E. Yu. Guseva
TI  - On the inverse closedness of the subalgebra of local absolutely summing operators
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 27
EP  - 36
VL  - 207
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_207_a3/
LA  - ru
ID  - INTO_2022_207_a3
ER  - 
%0 Journal Article
%A E. Yu. Guseva
%T On the inverse closedness of the subalgebra of local absolutely summing operators
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 27-36
%V 207
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_207_a3/
%G ru
%F INTO_2022_207_a3
E. Yu. Guseva. On the inverse closedness of the subalgebra of local absolutely summing operators. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Winter Mathematical School "Modern Methods of Function Theory and Related Problems", Voronezh, January 28 - February 2, 2021, Part 2, Tome 207 (2022), pp. 27-36. http://geodesic.mathdoc.fr/item/INTO_2022_207_a3/