On the product of $l_{s,r}$-nuclear operators and operators close to them
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Winter Mathematical School "Modern Methods of Function Theory and Related Problems", Voronezh, January 28 - February 2, 2021, Part 2, Tome 207 (2022), pp. 107-119.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we analyze the possibilities of factorization of various types of nuclear operators through Hilbert spaces and apply the results obtained to problems on the distribution of eigenvalues of operators from the corresponding classes.
Keywords: nuclear operator, Schatten class, Lorentz space, factorization, Hilbert space.
@article{INTO_2022_207_a11,
     author = {O. I. Reinov},
     title = {On the product of $l_{s,r}$-nuclear operators and operators close to them},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {107--119},
     publisher = {mathdoc},
     volume = {207},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_207_a11/}
}
TY  - JOUR
AU  - O. I. Reinov
TI  - On the product of $l_{s,r}$-nuclear operators and operators close to them
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 107
EP  - 119
VL  - 207
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_207_a11/
LA  - ru
ID  - INTO_2022_207_a11
ER  - 
%0 Journal Article
%A O. I. Reinov
%T On the product of $l_{s,r}$-nuclear operators and operators close to them
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 107-119
%V 207
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_207_a11/
%G ru
%F INTO_2022_207_a11
O. I. Reinov. On the product of $l_{s,r}$-nuclear operators and operators close to them. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Winter Mathematical School "Modern Methods of Function Theory and Related Problems", Voronezh, January 28 - February 2, 2021, Part 2, Tome 207 (2022), pp. 107-119. http://geodesic.mathdoc.fr/item/INTO_2022_207_a11/

[1] Birman M. Sh., Solomyak M. Z., Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Izd-vo LGU, L., 1980

[2] Reinov O. I., “O proizvedenii yadernykh operatorov”, Funkts. anal. prilozh., 51:4 (2017), 90–91 | MR | Zbl

[3] Reinov O. I., “O proizvedenii $s$-yadernykh operatorov”, Mat. zametki., 107:2 (2020), 311–316 | MR | Zbl

[4] Carleman T., “Über die Fourierkoeffizienten einer stetigen Funktion”, Acta Math., 41 (1916), 377–384 | DOI | MR

[5] Grothendieck A., “Produits tensoriels topologiques et espases nucléaires”, Mem. Am. Math. Soc., 16 (1955) | MR | Zbl

[6] Hinrichs A., Pietsch A., “$p$-Nuclear operators in the sense of Grothendieck”, Math. Nachr., 283:2 (2010), 232–261 | DOI | MR | Zbl

[7] Horn A., “On the singular values of a product of completely continuous operators”, Proc. Natl. Acad. Sci. U.S.A., 36 (1950), 374–375 | DOI | MR | Zbl

[8] Johnson W. B., Konig H., Maurey B., Retherford J. R., “Eigenvalues of $p$-summing and $l_p$-type operators in Banach spaces”, J. Funct. Anal., 32 (1979), 353–380 | DOI | MR | Zbl

[9] Konig H., Eigenvalue Distribution of Compact Operators, Basel, Springer, 1986 | MR | Zbl

[10] Lalesco T., “Un theoréorème sur les noyaux composés”, Bull. Sect. Sci. Acad. Roum., 3 (1915), 271–272

[11] Pietsch A., “Weyl numbers and eigenvalues of operators in Banach spaces”, Math. Ann., 247 (1980), 149–168 | DOI | MR | Zbl

[12] Pietsch A., Eigenvalues and $s$-Numbers, Cambridge Univ. Press, Cambridge, 1987 | MR | Zbl

[13] Pietsch A., History of Banach Spaces and Linear Operators, Birkhäuser, Boston, 2007 | MR | Zbl

[14] Schatten R., A Theory of Cross-Spaces, Princeton Univ. Press, 1950 | MR | Zbl

[15] Schur I., “Über die charakteristischen Wurzeln einer linearen Substitution mit einer Anwendung auf die Theorie der Integralgleichungen”, Math. Ann., 66 (1909), 488–510 | DOI | MR | Zbl

[16] Triebel H., “Über die Verteilung der Approximationszahlen kompakter Operatoren in Sobolev–Besov-Räumen”, Invent. Math., 4 (1967), 275–293 | DOI | MR | Zbl