Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2022_206_a6, author = {V. L. Kamynin}, title = {On the inverse problem of determining the lowest coefficient depending on the space variable in a parabolic equation with weak degeneracy}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {68--81}, publisher = {mathdoc}, volume = {206}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2022_206_a6/} }
TY - JOUR AU - V. L. Kamynin TI - On the inverse problem of determining the lowest coefficient depending on the space variable in a parabolic equation with weak degeneracy JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2022 SP - 68 EP - 81 VL - 206 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2022_206_a6/ LA - ru ID - INTO_2022_206_a6 ER -
%0 Journal Article %A V. L. Kamynin %T On the inverse problem of determining the lowest coefficient depending on the space variable in a parabolic equation with weak degeneracy %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2022 %P 68-81 %V 206 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2022_206_a6/ %G ru %F INTO_2022_206_a6
V. L. Kamynin. On the inverse problem of determining the lowest coefficient depending on the space variable in a parabolic equation with weak degeneracy. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Winter Mathematical School "Modern Methods of Function Theory and Related Problems", Voronezh, January 28 - February 2, 2021, Part 1, Tome 206 (2022), pp. 68-81. http://geodesic.mathdoc.fr/item/INTO_2022_206_a6/
[17] Gilbarg D., Trudinger N., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | MR
[18] Kamynin V. L., Kostin A. B., “Dve obratnye zadachi opredeleniya koeffitsienta v parabolicheskom uravnenii”, Differ. uravn., 46:3 (2010), 372—383 | MR | Zbl
[19] Kamynin V. L., “Obratnaya zadacha opredeleniya koeffitsienta pogloscheniya v vyrozhdayuschemsya parabolicheskom uravnenii v klasse $L_\infty$”, Zh. vychisl. mat. mat. fiz., 61:3 (2021), 413—427 | Zbl
[20] Kamynin V. L., “Obratnaya zadacha opredeleniya mladshego koeffitsienta v parabolicheskom uravnenii pri uslovii integralnogo nablyudeniya”, Mat. zametki., 94:2 (2013), 207—217 | Zbl
[21] Kamynin V. L., “Obratnaya zadacha opredeleniya pravoi chasti v vyrozhdayuschemsya parabolicheskom uravnenii s neogranichennymi koeffitsientami”, Zh. vychisl. mat. mat. fiz., 57:5 (2017), 832–841 | Zbl
[22] Kozhanov A. I., “Ob odnom nelineinom nagruzhennom uravnenii i o svyazannoi s nim obratnoi zadache”, Mat. zametki., 76:6 (2004), 840—853 | Zbl
[23] Kruzhkov S. N., “Kvazilineinye parabolicheskie uravneniya i sistemy s dvumya nezavisimymi peremennymi”, Tr. semin. im. I. G. Petrovskogo., 1979, no. 5, 217–272 | Zbl
[24] Kruzhkov S. N., Nelineinye uravneniya s chastnymi proizvodnymi. Ch. 1, Izd-vo MGU, M., 1969
[25] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967 | MR
[26] Lyusternik L. A., Sobolev V. I., Kratkii kurs funktsionalnogo analiza, Vysshaya shkola, M., 1982 | MR
[27] Prilepko A. I., Kostin A. B., “Ob obratnykh zadachakh opredeleniya koeffitsienta v parabolicheskom uravnenii, I”, Sib. mat. zh., 33:3 (1992), 146—155 | MR | Zbl
[28] Prilepko A. I., Kostin A. B., “Ob obratnykh zadachakh opredeleniya koeffitsienta v parabolicheskom uravnenii, II”, Sib. mat. zh., 34:5 (1993), 147—162 | MR | Zbl
[29] Prilepko A. I., Tikhonov I. V., “Printsip pozitivnosti resheniya v lineinoi obratnoi zadache i ego primenenie k koeffitsientnoi zadache teploprovodnosti”, Dokl. RAN., 394:1 (1999), 21—23
[30] Bouchouev I., Isakov V., “Uniqueness, stability and numerical methods for the inverse problem that arises in financial markets”, Inv. Probl., 15:3 (1999), 95–116 | DOI | MR
[31] Cannarsa P., Martinez P., Vancostenoble J., “Global Carleman estimates for degenerate parabolic operators with applications”, Mem. Am. Math. Soc., 239:1133 (2016), 1–207 | MR
[32] Hussein M. S., Lesnic D., Kamynin V. L., Kostin A. B., “Direct and inverse source problem for degenerate parabolic equations”, J. Inv. Ill-Posed Probl., 28:3 (2020), 425–448 | DOI | MR | Zbl
[33] Kamynin V. L., “Inverse problem of determining the absorption coefficient in a degenerate parabolic equation in the class of $L_2$-functions”, J. Math. Sci., 250:2 (2020), 322–336 | DOI | MR | Zbl
[34] Prilepko A. I, Kamynin V. L., Kostin A. B., “Inverse source problem for parabolic equation with the condition of integral observation in time”, J. Inv. Ill-Posed Probl., 26:4 (2018), 523–539 | DOI | MR | Zbl