On the inverse problem of determining the lowest coefficient depending on the space variable in a parabolic equation with weak degeneracy
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Winter Mathematical School "Modern Methods of Function Theory and Related Problems", Voronezh, January 28 - February 2, 2021, Part 1, Tome 206 (2022), pp. 68-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we prove existence and uniqueness theorems for solutions of the inverse problem of determining the $x$-dependent absorption coefficient in a degenerate parabolic equation. As an additional condition, the integral observation condition is specified. Also, we give examples of inverse problems satisfying the conditions of the theorems proved in the paper.
Keywords: inverse problem, integral observation, degenerate parabolic equation.
@article{INTO_2022_206_a6,
     author = {V. L. Kamynin},
     title = {On the inverse problem of determining the lowest coefficient depending on the space variable in a parabolic equation with weak degeneracy},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {68--81},
     publisher = {mathdoc},
     volume = {206},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_206_a6/}
}
TY  - JOUR
AU  - V. L. Kamynin
TI  - On the inverse problem of determining the lowest coefficient depending on the space variable in a parabolic equation with weak degeneracy
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 68
EP  - 81
VL  - 206
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_206_a6/
LA  - ru
ID  - INTO_2022_206_a6
ER  - 
%0 Journal Article
%A V. L. Kamynin
%T On the inverse problem of determining the lowest coefficient depending on the space variable in a parabolic equation with weak degeneracy
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 68-81
%V 206
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_206_a6/
%G ru
%F INTO_2022_206_a6
V. L. Kamynin. On the inverse problem of determining the lowest coefficient depending on the space variable in a parabolic equation with weak degeneracy. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Winter Mathematical School "Modern Methods of Function Theory and Related Problems", Voronezh, January 28 - February 2, 2021, Part 1, Tome 206 (2022), pp. 68-81. http://geodesic.mathdoc.fr/item/INTO_2022_206_a6/

[17] Gilbarg D., Trudinger N., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | MR

[18] Kamynin V. L., Kostin A. B., “Dve obratnye zadachi opredeleniya koeffitsienta v parabolicheskom uravnenii”, Differ. uravn., 46:3 (2010), 372—383 | MR | Zbl

[19] Kamynin V. L., “Obratnaya zadacha opredeleniya koeffitsienta pogloscheniya v vyrozhdayuschemsya parabolicheskom uravnenii v klasse $L_\infty$”, Zh. vychisl. mat. mat. fiz., 61:3 (2021), 413—427 | Zbl

[20] Kamynin V. L., “Obratnaya zadacha opredeleniya mladshego koeffitsienta v parabolicheskom uravnenii pri uslovii integralnogo nablyudeniya”, Mat. zametki., 94:2 (2013), 207—217 | Zbl

[21] Kamynin V. L., “Obratnaya zadacha opredeleniya pravoi chasti v vyrozhdayuschemsya parabolicheskom uravnenii s neogranichennymi koeffitsientami”, Zh. vychisl. mat. mat. fiz., 57:5 (2017), 832–841 | Zbl

[22] Kozhanov A. I., “Ob odnom nelineinom nagruzhennom uravnenii i o svyazannoi s nim obratnoi zadache”, Mat. zametki., 76:6 (2004), 840—853 | Zbl

[23] Kruzhkov S. N., “Kvazilineinye parabolicheskie uravneniya i sistemy s dvumya nezavisimymi peremennymi”, Tr. semin. im. I. G. Petrovskogo., 1979, no. 5, 217–272 | Zbl

[24] Kruzhkov S. N., Nelineinye uravneniya s chastnymi proizvodnymi. Ch. 1, Izd-vo MGU, M., 1969

[25] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967 | MR

[26] Lyusternik L. A., Sobolev V. I., Kratkii kurs funktsionalnogo analiza, Vysshaya shkola, M., 1982 | MR

[27] Prilepko A. I., Kostin A. B., “Ob obratnykh zadachakh opredeleniya koeffitsienta v parabolicheskom uravnenii, I”, Sib. mat. zh., 33:3 (1992), 146—155 | MR | Zbl

[28] Prilepko A. I., Kostin A. B., “Ob obratnykh zadachakh opredeleniya koeffitsienta v parabolicheskom uravnenii, II”, Sib. mat. zh., 34:5 (1993), 147—162 | MR | Zbl

[29] Prilepko A. I., Tikhonov I. V., “Printsip pozitivnosti resheniya v lineinoi obratnoi zadache i ego primenenie k koeffitsientnoi zadache teploprovodnosti”, Dokl. RAN., 394:1 (1999), 21—23

[30] Bouchouev I., Isakov V., “Uniqueness, stability and numerical methods for the inverse problem that arises in financial markets”, Inv. Probl., 15:3 (1999), 95–116 | DOI | MR

[31] Cannarsa P., Martinez P., Vancostenoble J., “Global Carleman estimates for degenerate parabolic operators with applications”, Mem. Am. Math. Soc., 239:1133 (2016), 1–207 | MR

[32] Hussein M. S., Lesnic D., Kamynin V. L., Kostin A. B., “Direct and inverse source problem for degenerate parabolic equations”, J. Inv. Ill-Posed Probl., 28:3 (2020), 425–448 | DOI | MR | Zbl

[33] Kamynin V. L., “Inverse problem of determining the absorption coefficient in a degenerate parabolic equation in the class of $L_2$-functions”, J. Math. Sci., 250:2 (2020), 322–336 | DOI | MR | Zbl

[34] Prilepko A. I, Kamynin V. L., Kostin A. B., “Inverse source problem for parabolic equation with the condition of integral observation in time”, J. Inv. Ill-Posed Probl., 26:4 (2018), 523–539 | DOI | MR | Zbl