On a nonlinear boundary-value problem for a third-order partial differential equations
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Winter Mathematical School "Modern Methods of Function Theory and Related Problems", Voronezh, January 28 - February 2, 2021, Part 1, Tome 206 (2022), pp. 63-67.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we examine the existence of a solution to a nonlinear boundary-value problem for a third-order partial differential equation and propose an algorithm for the search for an approximate solution.
Keywords: nonlinear boundary-value problem, partial differential equation, approximate solution.
@article{INTO_2022_206_a5,
     author = {N. Zh. Kazhkenova and N. T. Orumbayeva},
     title = {On a nonlinear boundary-value problem for a third-order partial differential equations},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {63--67},
     publisher = {mathdoc},
     volume = {206},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_206_a5/}
}
TY  - JOUR
AU  - N. Zh. Kazhkenova
AU  - N. T. Orumbayeva
TI  - On a nonlinear boundary-value problem for a third-order partial differential equations
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 63
EP  - 67
VL  - 206
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_206_a5/
LA  - ru
ID  - INTO_2022_206_a5
ER  - 
%0 Journal Article
%A N. Zh. Kazhkenova
%A N. T. Orumbayeva
%T On a nonlinear boundary-value problem for a third-order partial differential equations
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 63-67
%V 206
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_206_a5/
%G ru
%F INTO_2022_206_a5
N. Zh. Kazhkenova; N. T. Orumbayeva. On a nonlinear boundary-value problem for a third-order partial differential equations. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Winter Mathematical School "Modern Methods of Function Theory and Related Problems", Voronezh, January 28 - February 2, 2021, Part 1, Tome 206 (2022), pp. 63-67. http://geodesic.mathdoc.fr/item/INTO_2022_206_a5/

[1] Dzhumabaev D. S., “Priznaki odnoznachnoi razreshimosti lineinoi kraevoi zadachi dlya obyknovennogo differentsialnogo uravneniya”, Zh. vychisl. mat. mat. fiz., 29:2 (1989), 50–66 | Zbl

[2] Dzhumabaev D. S., “Priznaki odnoznachnoi razreshimosti lineinoi kraevoi zadachi dlya obyknovennogo differentsialnogo uravneniya”, Zh. vychisl. mat. mat. fiz., 29:1 (1989), 50–66 | MR | Zbl

[3] Orumbaeva N. T., “Ob odnom algoritme nakhozhdeniya resheniya periodicheskoi kraevoi zadachi dlya sistemy giperbolicheskikh uravnenii”, Sib. elektron. mat. izv., 10 (2013), 464–474 | MR | Zbl

[4] Orumbaeva N. T., “O razreshimosti nelineinoi poluperiodicheskoi kraevoi zadachi dlya sistemy giperbolicheskikh uravnenii”, Izv. vuzov. Mat., 2016, no. 9, 26–41 | MR | Zbl

[5] Polyanin A. D., Zaitsev V. F., Spravochnik po nelineinym uravneniyam matematicheskoi fiziki: Tochnye resheniya, Fizmatlit, M., 2002

[6] Assanova A. T., Iskakova N. B., Orumbayeva N. T., “Well-posedness of a periodic boundary value problem for the system of hyperbolic equations with delayed argument”, Vestn. Karagandinsk. un-ta. Ser. Mat., 2018, no. 1 (89), 8–11 | MR

[7] Assanova A. T., Iskakova N. B., Orumbayeva N. T., “On the well-posedness of periodic problems for the system of hyperbolic equations with finite time delay”, Math. Meth. Appl. Sci., 43:2 (2020), 881–902 | DOI | MR | Zbl

[8] Benjamin T. B., Bona J. L., Mahony J. J., “Model equations for long waves in nonlinear dispersive systems”, Phil. Trans. Roy. Soc. A. Math. Phys. Eng. Scis., 272:1220 (1972), 47–78 | MR | Zbl

[9] Peregrine D. N., “Calculations of the development of an undular bore”, J. Fluid Mech., 25:2 (1966), 321–330 | DOI

[10] Orumbayeva N. T., Keldibekova A. B., “On the solvability of the duo-periodic problem for the hyperbolic equation system with a mixed derivative”, Vestn. Karagandinsk. un-ta. Ser. Mat., 2019, no. 1 (93), 59–71

[11] Orumbayeva N. T., Keldibekova A. B., “On one solution of a periodic boundary-value problem for a third-order pseudoparabolic equation”, Lobachevskii J. Math., 41:9 (2020), 1857–1865 | DOI | MR

[12] Orumbayeva N. T., Sabitbekova G., “A boundary-value problem for nonlinear differential equation with arbitrary functions”, Vestn. Karagandinsk. un-ta. Ser. Mat., 2017, no. 1 (85), 71–76 | MR

[13] Orumbayeva N. T., Sabitbekova G., “On a solution of a nonlinear semi-periodic boundary-value problem for a differential equation with arbitrary functions”, Functional Analysis in Interdisciplinary Applications, v. 216, eds. Kalmenov T., Nursultanov E., Ruzhansky M., Sadybekov M., Springer, Cham, 2017, 158–163 | DOI | MR | Zbl

[14] Orumbayeva N. T., Shayakhmetova B. K., “On a method of finding a solution of semi-periodic boundary-value problem for hyperbolic equations”, AIP Conf. Proc., 1759:1 (2016), 020121 | DOI | MR