On a Neumann-type problem for the Burgers equation in a degenerate corner domain
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Winter Mathematical School "Modern Methods of Function Theory and Related Problems", Voronezh, January 28 - February 2, 2021, Part 1, Tome 206 (2022), pp. 42-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using a priori estimates, the Faedo—Galerkin method, and other methods of functional analysis, we prove the well-posedness of the boundary-value problem for the Burgers equation with nonlinear Neumann-type boundary conditions in degenerate corner domains in Sobolev spaces.
Keywords: Burgers equation, Neumann-type boundary condition, degenerate corner domain, a priori estimate, solvability, uniqueness.
@article{INTO_2022_206_a4,
     author = {M. T. Dzhenaliev (Jenaliyev) and M. G. Yergaliyev and A. A. Assetov and A. M. Ayazbayeva},
     title = {On a {Neumann-type} problem for the {Burgers} equation in a degenerate corner domain},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {42--62},
     publisher = {mathdoc},
     volume = {206},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_206_a4/}
}
TY  - JOUR
AU  - M. T. Dzhenaliev (Jenaliyev)
AU  - M. G. Yergaliyev
AU  - A. A. Assetov
AU  - A. M. Ayazbayeva
TI  - On a Neumann-type problem for the Burgers equation in a degenerate corner domain
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 42
EP  - 62
VL  - 206
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_206_a4/
LA  - ru
ID  - INTO_2022_206_a4
ER  - 
%0 Journal Article
%A M. T. Dzhenaliev (Jenaliyev)
%A M. G. Yergaliyev
%A A. A. Assetov
%A A. M. Ayazbayeva
%T On a Neumann-type problem for the Burgers equation in a degenerate corner domain
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 42-62
%V 206
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_206_a4/
%G ru
%F INTO_2022_206_a4
M. T. Dzhenaliev (Jenaliyev); M. G. Yergaliyev; A. A. Assetov; A. M. Ayazbayeva. On a Neumann-type problem for the Burgers equation in a degenerate corner domain. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Winter Mathematical School "Modern Methods of Function Theory and Related Problems", Voronezh, January 28 - February 2, 2021, Part 1, Tome 206 (2022), pp. 42-62. http://geodesic.mathdoc.fr/item/INTO_2022_206_a4/

[1] Amangalieva M. M., Dzhenaliev M. T., Kosmakova M. T., Ramazanov M. I., “Ob odnoi odnorodnoi zadache dlya uravneniya teploprovodnosti v beskonechnoi uglovoi oblasti”, Sib. mat. zh., 56:6 (2015), 1234–1248 | MR | Zbl

[2] Verigin N. N., “Ob odnom klasse gidromekhanicheskikh zadach dlya oblastei s podvizhnymi granitsami”, Dinamika zhidkosti so svobodnymi granitsami, v. 46, Novosibirsk, 1980, 23–32 | MR | Zbl

[3] Vishik M. I., Fursikov A. V., Matematicheskie zadachi statisticheskoi gidrodinamiki, Nauka, M., 1980 | MR

[4] Kartashov E. M., “Problema teplovogo udara v oblasti s dvizhuscheisya granitsei na osnove novykh integralnykh sootnoshenii”, Izv. RAN. Energetika., 4 (1997), 122–137 | Zbl

[5] Kim E. I., Omelchenko V. T., Kharin S. N., Matematicheskie modeli teplovykh protsessov v elektricheskikh kontaktakh, AN KazSSR, Alma-Ata, 1977 | MR

[6] Mitropolskii Yu. A., Berezovskii A. A., Plotnitskii T. A., “Zadachi so svobodnymi granitsami dlya nelineinogo evolyutsionnogo uravneniya v problemakh metallurgii, meditsiny, ekologii”, Ukr. mat. zh., 44:1 (1992), 67–75 | MR

[7] Solonnikov V. A., Fazano A., “Ob odnomernoi parabolicheskoi zadache, voznikayuschei pri izuchenii nekotorykh zadach so svobodnymi granitsami”, Zap. nauch. semin. POMI., 269 2000, 322–338 | Zbl

[8] Adams R. A., Fournier J. J. F., Sobolev spaces, Elsevier, Amsterdam, 2003 | MR

[9] Amangaliyeva M. M., Jenaliyev M. T., Kosmakova M. T., Ramazanov M. I., “About Dirichlet boundary-value problem for the heat equation in the infinite angular domain”, Boundary-Value Problems., 213 (2014), 1–21 | MR

[10] Amangaliyeva M. M., Jenaliyev M. T., Kosmakova M. T., Ramazanov M. I., “On the solvability of nonhomogeneous boundary-value problem for the Burgers equation in the angular domain and related integral equations”, Springer Proc. Math. Stat., 216 (2017), 123–141 | MR | Zbl

[11] Benia Y., Sadallah B.-K., “Existence of solutions to Burgers equations in domains that can be transformed into rectangles”, Electron. J. Differ. Equations., 157 (2016), 1–13 | MR

[12] Benia Y., Sadallah B.-K., “Existence of solutions to Burgers equations in a non-parabolic domain”, Electron. J. Differ. Equations., 20 (2018), 1–13 | MR

[13] Burgers J. M., The Nonlinear Diffusion Equation. Asymptotic Solutions and Statistical Problems, Reidel Publishing Company, Boston, USA, 1974 | Zbl

[14] Farina A., Preziosi L., “Non-isothermal injection moulding with resin cure and perform deformability”, Composites. A. Appl. Sci. Manufact., 31:12 (2000), 1355–1372 | DOI

[15] Fasano A., “A One-dimensional flow problem in porous media with hydrophile grains”, Math. Meth. Appl. Sci., 22 (1999), 605–617 | 3.0.CO;2-X class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[16] Fasano A., Solonnikov V., “Estimates of weighted Hölder norms of the solutions to a parabolic boundary-value problem in an initially degenerate domain”, Rend. Mat. Acc. Lincei, Ser. 9., 13:1 (2002), 23–41 | MR | Zbl

[17] Fasano A., Solonnikov V., “Unsaturated incompressible flows in adsorbing porous media”, Math. Meth. Appl. Sci., 26 (2003), 1391–1419 | DOI | MR | Zbl

[18] Lions J.-L., Magenes E., Problemes aux limites non homogenes et applications, Dunod, Paris, 1968 | MR | Zbl

[19] Molinet L., Pilod D., Vento S., “On well-posedness for some dispersive perturbations of Burgers equation”, Ann. Inst. H. Poincaré. Anal. Non Lineaire., 35:7 (2018), 1719–1756 | DOI | MR | Zbl

[20] Nouri Z., Bendaas S., Kadem H. E., “$N$ wave and periodic wave solutions for Burgers equations”, Int. J. Anal. Appl., 18:2 (2020), 304–318 | MR

[21] Riesz F., Sz.-Nagy B., Leçons d'Analyse Fonctionelle, Akademiai Kiado, Budapest, 1972 | MR

[22] “Freezing similarity solutions in the multidimensional Burgers equation”, Nonlinearity., 30:12 (2017), 4558–4586 | DOI | MR | Zbl

[23] Selmi R., Chaabani A., “Well-posedness to 3D Burgers' equation in critical Gevrey Sobolev spaces”, Arch. Math., 112:6 (2019), 661–672 | MR | Zbl

[24] Yang X.-J., Tenreiro Machado J. A., “A new fractal nonlinear Burgers' equation arising in the acoustic signals propagation”, Math. Meth. Appl. Sci., 42:18 (2019), 7539–7544 | DOI | MR | Zbl

[25] Zhu N., Liu Zh., Zhao K., “On the Boussinesq–Burgers equations driven by dynamic boundary conditions”, J. Differ. Equations., 264:3 (2018), 2287–2309 | DOI | MR | Zbl