On one Dubinin problem for the weight capacitance of a Hesse condenser with $A_1$-Mackenhaupt weight
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Winter Mathematical School "Modern Methods of Function Theory and Related Problems", Voronezh, January 28 - February 2, 2021, Part 1, Tome 206 (2022), pp. 138-145.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the Hesse condenser in $\mathbb{R}^n$, $n\ge2$, the equivalence of its weight capacitance and its weight modulus with $A_1$-Muckenhoupt weight is proved. This gives a solution of the Dubinin problem on estimating the capacitance of a capacitor with the weight mentioned.
Mots-clés : capacitance
Keywords: modulus of a family of curves, Muckenhoupt weight.
@article{INTO_2022_206_a12,
     author = {V. A. Shlyk},
     title = {On one {Dubinin} problem for the weight capacitance of a {Hesse} condenser with $A_1${-Mackenhaupt} weight},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {138--145},
     publisher = {mathdoc},
     volume = {206},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_206_a12/}
}
TY  - JOUR
AU  - V. A. Shlyk
TI  - On one Dubinin problem for the weight capacitance of a Hesse condenser with $A_1$-Mackenhaupt weight
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 138
EP  - 145
VL  - 206
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_206_a12/
LA  - ru
ID  - INTO_2022_206_a12
ER  - 
%0 Journal Article
%A V. A. Shlyk
%T On one Dubinin problem for the weight capacitance of a Hesse condenser with $A_1$-Mackenhaupt weight
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 138-145
%V 206
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_206_a12/
%G ru
%F INTO_2022_206_a12
V. A. Shlyk. On one Dubinin problem for the weight capacitance of a Hesse condenser with $A_1$-Mackenhaupt weight. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Winter Mathematical School "Modern Methods of Function Theory and Related Problems", Voronezh, January 28 - February 2, 2021, Part 1, Tome 206 (2022), pp. 138-145. http://geodesic.mathdoc.fr/item/INTO_2022_206_a12/

[1] Dymchenko Yu. V., Shlyk V. A., “Ob odnoi zadache Dubinina dlya emkosti kondensatora s konechnym chislom plastin”, Mat. zametki., 103:6 (2018), 841–852 | MR | Zbl

[2] Stoilov S., Lektsii o topologicheskikh printsipakh teorii analiticheskikh funktsii, Nauka, M., 1964

[3] Sychev A. V., Moduli i prostranstvennye kvazikonformnye otobrazheniya, Nauka, Novosibirsk, 1983

[4] Federer G., Geometricheskaya teoriya mery, Nauka, M., 1987

[5] Ahlfors L. V., Conformal Invariants. Topics in Geometric Function Theory, McGraw-Hill, New York, 1973 | MR | Zbl

[6] Dubinin V., “Some unsolved problems about condenser capacities on the plane”, Complex Analysis and Dynamical Systems, eds. Agranovsky M., Golberg A., Jacobzon F., Shoikhet D., Zalcman L. Complex, Birkhäuser, Cham, 2018, 81–92 | DOI | MR | Zbl

[7] Heinonen J., Kilpeläinen T., Martio O., Nonlinear Potential Theory of Degenerate Elliptic Equations, Dover, New York, 2012

[8] Hesse J., “A $p$-extremal length and $p$-capacity equality”, Ark. Mat., 13:1 (1975), 131–144 | DOI | MR | Zbl

[9] Muckenhoupt B., “Weighted norm unequalities for the Hardy maximal functions”, Trans. Am. Math. Soc., 192 (1972), 207–226 | DOI | MR

[10] Ohtsuka M., Extremal Length and Precise Functions, Gakkōtosho, Tokyo, 2003 | MR | Zbl

[11] Rudin W., Real and Complex Analysis, McGraw-Hill, New York, 1987 | MR | Zbl

[12] Turesson B., Nonlinear Potential Theory and Weighted Sobolev Spaces, Springer, Berlin, 2000 | MR | Zbl