Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2022_206_a12, author = {V. A. Shlyk}, title = {On one {Dubinin} problem for the weight capacitance of a {Hesse} condenser with $A_1${-Mackenhaupt} weight}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {138--145}, publisher = {mathdoc}, volume = {206}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2022_206_a12/} }
TY - JOUR AU - V. A. Shlyk TI - On one Dubinin problem for the weight capacitance of a Hesse condenser with $A_1$-Mackenhaupt weight JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2022 SP - 138 EP - 145 VL - 206 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2022_206_a12/ LA - ru ID - INTO_2022_206_a12 ER -
%0 Journal Article %A V. A. Shlyk %T On one Dubinin problem for the weight capacitance of a Hesse condenser with $A_1$-Mackenhaupt weight %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2022 %P 138-145 %V 206 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2022_206_a12/ %G ru %F INTO_2022_206_a12
V. A. Shlyk. On one Dubinin problem for the weight capacitance of a Hesse condenser with $A_1$-Mackenhaupt weight. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Winter Mathematical School "Modern Methods of Function Theory and Related Problems", Voronezh, January 28 - February 2, 2021, Part 1, Tome 206 (2022), pp. 138-145. http://geodesic.mathdoc.fr/item/INTO_2022_206_a12/
[1] Dymchenko Yu. V., Shlyk V. A., “Ob odnoi zadache Dubinina dlya emkosti kondensatora s konechnym chislom plastin”, Mat. zametki., 103:6 (2018), 841–852 | MR | Zbl
[2] Stoilov S., Lektsii o topologicheskikh printsipakh teorii analiticheskikh funktsii, Nauka, M., 1964
[3] Sychev A. V., Moduli i prostranstvennye kvazikonformnye otobrazheniya, Nauka, Novosibirsk, 1983
[4] Federer G., Geometricheskaya teoriya mery, Nauka, M., 1987
[5] Ahlfors L. V., Conformal Invariants. Topics in Geometric Function Theory, McGraw-Hill, New York, 1973 | MR | Zbl
[6] Dubinin V., “Some unsolved problems about condenser capacities on the plane”, Complex Analysis and Dynamical Systems, eds. Agranovsky M., Golberg A., Jacobzon F., Shoikhet D., Zalcman L. Complex, Birkhäuser, Cham, 2018, 81–92 | DOI | MR | Zbl
[7] Heinonen J., Kilpeläinen T., Martio O., Nonlinear Potential Theory of Degenerate Elliptic Equations, Dover, New York, 2012
[8] Hesse J., “A $p$-extremal length and $p$-capacity equality”, Ark. Mat., 13:1 (1975), 131–144 | DOI | MR | Zbl
[9] Muckenhoupt B., “Weighted norm unequalities for the Hardy maximal functions”, Trans. Am. Math. Soc., 192 (1972), 207–226 | DOI | MR
[10] Ohtsuka M., Extremal Length and Precise Functions, Gakkōtosho, Tokyo, 2003 | MR | Zbl
[11] Rudin W., Real and Complex Analysis, McGraw-Hill, New York, 1987 | MR | Zbl
[12] Turesson B., Nonlinear Potential Theory and Weighted Sobolev Spaces, Springer, Berlin, 2000 | MR | Zbl