Integrability of $lcAC_S$-Structures
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Winter Mathematical School "Modern Methods of Function Theory and Related Problems", Voronezh, January 28 - February 2, 2021, Part 1, Tome 206 (2022), pp. 125-132.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study almost Hermitian structures induced on maximal integral manifolds of the first fundamental distribution of a locally conformally almost cosymplectic manifold.
Keywords: almost Hermitian structure, integral manifold, fundamental distribution, cosymplectic manifold.
@article{INTO_2022_206_a10,
     author = {A. R. Rustanov and S. V. Kharitonova},
     title = {Integrability of $lcAC_S${-Structures}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {125--132},
     publisher = {mathdoc},
     volume = {206},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_206_a10/}
}
TY  - JOUR
AU  - A. R. Rustanov
AU  - S. V. Kharitonova
TI  - Integrability of $lcAC_S$-Structures
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 125
EP  - 132
VL  - 206
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_206_a10/
LA  - ru
ID  - INTO_2022_206_a10
ER  - 
%0 Journal Article
%A A. R. Rustanov
%A S. V. Kharitonova
%T Integrability of $lcAC_S$-Structures
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 125-132
%V 206
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_206_a10/
%G ru
%F INTO_2022_206_a10
A. R. Rustanov; S. V. Kharitonova. Integrability of $lcAC_S$-Structures. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Winter Mathematical School "Modern Methods of Function Theory and Related Problems", Voronezh, January 28 - February 2, 2021, Part 1, Tome 206 (2022), pp. 125-132. http://geodesic.mathdoc.fr/item/INTO_2022_206_a10/

[10] Abu-Saleem A., Rustanov A. R., Kharitonova S. V., “Svoistva integriruemosti obobschennykh mnogoobrazii Kenmotsu”, Vladikavkaz. mat. zh., 20:3 (2018), 4–20 | MR | Zbl

[11] Kirichenko V. F., “Metody obobschennoi ermitovoi geometrii v teorii pochti kontaktnykh mnogoobrazii”, Itogi nauki i tekhn. Ser. Sovr. mat. prilozh. Temat. obz., 18 (1986), 25–71

[12] Kirichenko V. F., Differentsialno-geometricheskie struktury na mnogoobraziyakh, Pechatnyi dom, Odessa, 2013

[13] Kirichenko V. F., Rustanov A. R., “Differentsialnaya geometriya kvazi-sasakievykh mnogoobrazii”, Mat. sb., 193:8 (2002), 71–100 | Zbl

[14] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii. T. 1, 2, Nauka, M., 1981 | MR

[15] Rustanov A. R., “Svoistva integriruemosti $NC_10$-mnogoobrazii”, Mat. fiz. komp. model., 20:5 (2017), 32–38 | MR

[16] Kharitonova S. V., “O geometrii lokalno konformno pochti kosimplekticheskikh mnogoobrazii”, Mat. zametki., 86:1 (2009), 126–138 | MR | Zbl

[17] Blair D. E., “Contact manifolds in Riemannian geometry”, Lect. Notes Math., 509 (1976), 1–146 | DOI | MR

[18] Sasaki S., Hatakeyama J., “On differentiable manifolds with certain structures which are closely related to almost contact structure”, Tôhoku Math. J., 13:2 (1961), 281–294 | DOI | MR | Zbl

[19] Vaisman I., “Conformal changes of almost contact metric manifolds”, Lect. Notes Math., 792 (1980), 435–443 | DOI | MR | Zbl