Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2022_206_a10, author = {A. R. Rustanov and S. V. Kharitonova}, title = {Integrability of $lcAC_S${-Structures}}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {125--132}, publisher = {mathdoc}, volume = {206}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2022_206_a10/} }
TY - JOUR AU - A. R. Rustanov AU - S. V. Kharitonova TI - Integrability of $lcAC_S$-Structures JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2022 SP - 125 EP - 132 VL - 206 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2022_206_a10/ LA - ru ID - INTO_2022_206_a10 ER -
%0 Journal Article %A A. R. Rustanov %A S. V. Kharitonova %T Integrability of $lcAC_S$-Structures %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2022 %P 125-132 %V 206 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2022_206_a10/ %G ru %F INTO_2022_206_a10
A. R. Rustanov; S. V. Kharitonova. Integrability of $lcAC_S$-Structures. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Winter Mathematical School "Modern Methods of Function Theory and Related Problems", Voronezh, January 28 - February 2, 2021, Part 1, Tome 206 (2022), pp. 125-132. http://geodesic.mathdoc.fr/item/INTO_2022_206_a10/
[10] Abu-Saleem A., Rustanov A. R., Kharitonova S. V., “Svoistva integriruemosti obobschennykh mnogoobrazii Kenmotsu”, Vladikavkaz. mat. zh., 20:3 (2018), 4–20 | MR | Zbl
[11] Kirichenko V. F., “Metody obobschennoi ermitovoi geometrii v teorii pochti kontaktnykh mnogoobrazii”, Itogi nauki i tekhn. Ser. Sovr. mat. prilozh. Temat. obz., 18 (1986), 25–71
[12] Kirichenko V. F., Differentsialno-geometricheskie struktury na mnogoobraziyakh, Pechatnyi dom, Odessa, 2013
[13] Kirichenko V. F., Rustanov A. R., “Differentsialnaya geometriya kvazi-sasakievykh mnogoobrazii”, Mat. sb., 193:8 (2002), 71–100 | Zbl
[14] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii. T. 1, 2, Nauka, M., 1981 | MR
[15] Rustanov A. R., “Svoistva integriruemosti $NC_10$-mnogoobrazii”, Mat. fiz. komp. model., 20:5 (2017), 32–38 | MR
[16] Kharitonova S. V., “O geometrii lokalno konformno pochti kosimplekticheskikh mnogoobrazii”, Mat. zametki., 86:1 (2009), 126–138 | MR | Zbl
[17] Blair D. E., “Contact manifolds in Riemannian geometry”, Lect. Notes Math., 509 (1976), 1–146 | DOI | MR
[18] Sasaki S., Hatakeyama J., “On differentiable manifolds with certain structures which are closely related to almost contact structure”, Tôhoku Math. J., 13:2 (1961), 281–294 | DOI | MR | Zbl
[19] Vaisman I., “Conformal changes of almost contact metric manifolds”, Lect. Notes Math., 792 (1980), 435–443 | DOI | MR | Zbl