Algorithms for diagnosing the motion of aircrafts
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and Mechanics, Tome 205 (2022), pp. 95-106.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we perform qualitative and numerical mathematical experiments on diagnosing the control system of an aircraft during its planning from nearly orbital altitudes with an initial speed close to the first escape speed. We show that diagnostic algorithms proposed are effective in the search for various types of reference malfunctions, in particular, malfunctions in sensors of control signals from a gyro-stabilized platform, almost reference malfunctions in trajectory measurements with errors, and also in the case of continuous express diagnostics.
Keywords: problem of differential diagnostics, direct (indirect) control system, diagnostics, a priori list of malfunctions.
@article{INTO_2022_205_a5,
     author = {M. V. Shamolin},
     title = {Algorithms for diagnosing the motion of aircrafts},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {95--106},
     publisher = {mathdoc},
     volume = {205},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_205_a5/}
}
TY  - JOUR
AU  - M. V. Shamolin
TI  - Algorithms for diagnosing the motion of aircrafts
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 95
EP  - 106
VL  - 205
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_205_a5/
LA  - ru
ID  - INTO_2022_205_a5
ER  - 
%0 Journal Article
%A M. V. Shamolin
%T Algorithms for diagnosing the motion of aircrafts
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 95-106
%V 205
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_205_a5/
%G ru
%F INTO_2022_205_a5
M. V. Shamolin. Algorithms for diagnosing the motion of aircrafts. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and Mechanics, Tome 205 (2022), pp. 95-106. http://geodesic.mathdoc.fr/item/INTO_2022_205_a5/

[1] Borisenok I. T., Shamolin M. V., “Reshenie zadachi differentsialnoi diagnostiki”, Fundam. prikl. mat., 5:3 (1999), 775–790 | MR | Zbl

[2] Borisenok I. T., Shamolin M. V., “Reshenie zadachi differentsialnoi diagnostiki metodom statisticheskikh ispytanii”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 2001, no. 1, 29–31 | MR | Zbl

[3] Zhukov V. P., “O dostatochnykh i neobkhodimykh usloviyakh asimptoticheskoi ustoichivosti nelineinykh dinamicheskikh sistem”, Avtomat. telemekh., 1994, no. 3, 24–36 | Zbl

[4] Mironovskii L. A., “Funktsionalnoe diagnostirovanie dinamicheskikh sistem”, Avtomat. telemekh., 1980, no. 3, 96–121.

[5] Okunev Yu. M., Sadovnichii V. A., Samsonov V. A., Chernyi G. G., “Kompleks modelirovaniya zadach dinamiki poleta”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 1996, no. 6, 66–75 | Zbl

[6] Parkhomenko P. P., Sagomonyan E. S., Osnovy tekhnicheskoi diagnostiki, Energiya, M., 1981

[7] Chikin M. G., “Sistemy s fazovymi ogranicheniyami”, Avtomat. telemekh., 1987, no. 10, 38–46 | MR | Zbl

[8] Shamolin M. V., Metody analiza dinamicheskikh sistem s peremennoi dissipatsiei v dinamike tverdogo tela, «Ekzamen», M., 2004

[9] Shamolin M. V., Metody analiza dinamicheskikh sistem s peremennoi dissipatsiei v dinamike tverdogo tela. Izd. 2, «Ekzamen», M., 2007

[10] Shamolin M. V., “Diagnostika neispravnostei v odnoi sisteme nepryamogo upravleniya”, Elektron. model., 31:4 (2009), 55–66

[11] Shamolin M. V., “Rasshirennaya zadacha differentsialnoi diagnostiki i ee vozmozhnoe reshenie”, Elektron. model., 31:1 (2009), 97–115

[12] Shamolin M. V., “Reshenie zadachi diagnostirovaniya v sluchae tochnykh traektornykh izmerenii s oshibkoi”, Elektron. model., 31:3 (2009), 73–90

[13] Shamolin M. V., “Diagnostika dvizheniya letatelnogo apparata v rezhime planiruyuschego spuska”, Elektron. model., 32:5 (2010), 31–44

[14] Shamolin M. V., “Diagnostika odnoi sistemy pryamogo upravleniya dvizheniem letatelnykh apparatov”, Elektron. model., 32:1 (2010), 45–52

[15] Shamolin M. V., “Diagnostika girostabilizirovannoi platformy, vklyuchennoi v sistemu upravleniya dvizheniem letatelnogo apparata”, Elektron. model., 33:3 (2011), 121–126

[16] Shamolin M. V., “Reshenie zadachi diagnostirovaniya v sluchayakh traektornykh izmerenii s oshibkoi i tochnykh traektornykh izmerenii”, Itogi nauki tekhn. Ser. Sovr. mat. prilozh. Temat. obz., 150 (2018), 88–109 | MR

[17] Shamolin M. V., “Zadachi differentsialnoi i topologicheskoi diagnostiki. Ch. 1. Uravneniya dvizheniya i klassifikatsiya neispravnostei”, Vestn. Samar. un-ta. Estestvennonauch. ser., 25:1 (2019), 32–43 | MR | Zbl

[18] Shamolin M. V., “Zadachi differentsialnoi i topologicheskoi diagnostiki. Ch. 2. Zadacha differentsialnoi diagnostiki”, Vestn. Samar. un-ta. Estestvennonauch. ser., 25:3 (2019), 22–31 | MR

[19] Shamolin M. V., “Zadachi differentsialnoi i topologicheskoi diagnostiki. Ch. 3. Zadacha kontrolya”, Vestn. Samar. un-ta. Estestvennonauch. ser., 25:4 (2019), 36–47 | MR | Zbl

[20] Shamolin M. V., “Zadachi differentsialnoi i topologicheskoi diagnostiki. Ch. 4. Zadacha diagnostirovaniya (sluchai tochnykh traektornykh izmerenii)”, Vestn. Samar. un-ta. Estestvennonauch. ser., 26:1 (2020), 36–47 | MR

[21] Shamolin M. V., Krugova E. P., “Zadacha diagnostiki modeli girostabilizirovannoi platformy”, Itogi nauki tekhn. Ser. Sovr. mat. prilozh. Temat. obz., 160 (2019), 137–141 | MR

[22] Aleksandrov A. Y., Aleksandrova E. B., Tikhonov A. A., “On the monoaxial stabilization of a rigid body under vanishing restoring torque”, AIP Conf. Proc., 1959 (2018), 080001 | DOI | MR

[23] Beck A., Teboulle M., “Mirror descent and nonlinear projected subgradient methods for convex optimization”, Oper. Res. Lett., 31:3 (2003), 167–175 | DOI | MR | Zbl

[24] Ben-Tal A., Margalit T., Nemirovski A., “The ordered subsets mirror descent optimization method with applications to tomography”, SIAM J. Optim., 12:1 (2001), 79–108 | DOI | MR | Zbl

[25] Shamolin M. V., “Foundations of differential and topological diagnostics”, J. Math. Sci., 114:1 (2003), 976–1024 | DOI | MR | Zbl

[26] Su W., Boyd S., Candes E., “A differential equation for modeling Nesterov's accelerated gradient method: Theory and insights”, J. Machine Learning Res., 2016, no. 17 (153), 1–43 | MR | Zbl

[27] Tikhonov A. A., Yakovlev A. B., “On dependence of equilibrium characteristics of the space tethered system on environmental parameters”, Int. J. Plasma Env. Sci. Techn., 13:1, 49–52 | MR