Systems with four degrees of freedom with dissipation: analysis and integrability
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and Mechanics, Tome 205 (2022), pp. 55-94

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is a survey on integrable systems with four degrees of freedom whose phase spaces are tangent bundles of four-dimensional smooth manifolds. First, we discuss in detail the original problem from the dynamics of a multidimensional rigid body in a nonconservative force field; then we consider general dynamical systems on the tangent bundles of a sufficiently large class of smooth manifolds and prove sufficient conditions for the integrability of the dynamical systems considered in the class of transcendental.
Keywords: dynamical system, integrability, transcendental first integral.
@article{INTO_2022_205_a4,
     author = {M. V. Shamolin},
     title = {Systems with four degrees of freedom with dissipation: analysis and integrability},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {55--94},
     publisher = {mathdoc},
     volume = {205},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_205_a4/}
}
TY  - JOUR
AU  - M. V. Shamolin
TI  - Systems with four degrees of freedom with dissipation: analysis and integrability
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 55
EP  - 94
VL  - 205
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_205_a4/
LA  - ru
ID  - INTO_2022_205_a4
ER  - 
%0 Journal Article
%A M. V. Shamolin
%T Systems with four degrees of freedom with dissipation: analysis and integrability
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 55-94
%V 205
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_205_a4/
%G ru
%F INTO_2022_205_a4
M. V. Shamolin. Systems with four degrees of freedom with dissipation: analysis and integrability. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and Mechanics, Tome 205 (2022), pp. 55-94. http://geodesic.mathdoc.fr/item/INTO_2022_205_a4/