Asymptotics of the independence number of a random subgraph of the graph $G(n,r,{}s)$
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and Mechanics, Tome 205 (2022), pp. 16-21

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we discuss the probabilistic version of the classical problem of extremal combinatorics stated appeared in the middle of the 20th century by P. Erdős, C. Ko, and R. Rado.
Keywords: random graph, extremal system of sets, hypergraph.
@article{INTO_2022_205_a2,
     author = {A. M. Raigorodskii},
     title = {Asymptotics of the independence number of a random subgraph of the graph $G(n,r,{<}s)$},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {16--21},
     publisher = {mathdoc},
     volume = {205},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_205_a2/}
}
TY  - JOUR
AU  - A. M. Raigorodskii
TI  - Asymptotics of the independence number of a random subgraph of the graph $G(n,r,{<}s)$
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 16
EP  - 21
VL  - 205
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_205_a2/
LA  - ru
ID  - INTO_2022_205_a2
ER  - 
%0 Journal Article
%A A. M. Raigorodskii
%T Asymptotics of the independence number of a random subgraph of the graph $G(n,r,{<}s)$
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 16-21
%V 205
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_205_a2/
%G ru
%F INTO_2022_205_a2
A. M. Raigorodskii. Asymptotics of the independence number of a random subgraph of the graph $G(n,r,{<}s)$. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and Mechanics, Tome 205 (2022), pp. 16-21. http://geodesic.mathdoc.fr/item/INTO_2022_205_a2/