Theorems on iterations of partial integrals in a space with mixed norm
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings – XXXI". Voronezh, May 3-9, 2020, Tome 204 (2022), pp. 97-103.

Voir la notice de l'article provenant de la source Math-Net.Ru

In $\mathbb{R}_2$, we consider partial integrals acting on the first or second variable and obtain conditions for bounded action in spaces of continuous functions with respect to one of the variables with values in the Lebesgue class $L_p$ with respect to the other variable. We assume that these functions are defined in a finite rectangle $D\in\mathbb{R}_2$. We prove theorems on the boundedness of iterations of these partial integrals in the spaces of anisotropic functions $C(D_\alpha^{(1)}; L_p(D_{\overline{\alpha}}^{(1)}))$, where $\alpha$ and $\overline{\alpha}$ are indices complementing each other up to the double index $(1;2)$.
Keywords: partial integral, anisotropic function space, mixed norm.
@article{INTO_2022_204_a9,
     author = {L. N. Lyakhov and N. I. Trusova},
     title = {Theorems on iterations of partial integrals in a space with mixed norm},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {97--103},
     publisher = {mathdoc},
     volume = {204},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_204_a9/}
}
TY  - JOUR
AU  - L. N. Lyakhov
AU  - N. I. Trusova
TI  - Theorems on iterations of partial integrals in a space with mixed norm
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 97
EP  - 103
VL  - 204
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_204_a9/
LA  - ru
ID  - INTO_2022_204_a9
ER  - 
%0 Journal Article
%A L. N. Lyakhov
%A N. I. Trusova
%T Theorems on iterations of partial integrals in a space with mixed norm
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 97-103
%V 204
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_204_a9/
%G ru
%F INTO_2022_204_a9
L. N. Lyakhov; N. I. Trusova. Theorems on iterations of partial integrals in a space with mixed norm. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings – XXXI". Voronezh, May 3-9, 2020, Tome 204 (2022), pp. 97-103. http://geodesic.mathdoc.fr/item/INTO_2022_204_a9/

[1] Lyakhov L. N., Inozemtsev A. I., “Chastnye integraly v anizotropnykh klassakh Lebega, I. Dvumernyi sluchai”, Probl. mat. anal., 102 (2020), 119–123 | Zbl

[2] Lyakhov L. N., Trusova N. I., “Ogranichennost operatorov s chastnymi integralami so smeshannoi normoi, I”, Chelyab. fiz.-mat. zh., 5:1 (2020), 22–31 | MR | Zbl

[3] Appell J. M., Kalitvin A. S., Zabrejko P. P., Partial Integral Operators and Integro-Differential Equations, Marcel Dekker, New York, 2000 | MR | Zbl