On the averaging principle for semilinear fractional differential inclusions in a Banach space with a deviating argument and a small parameter
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings – XXXI". Voronezh, May 3-9, 2020, Tome 204 (2022), pp. 74-84

Voir la notice de l'article provenant de la source Math-Net.Ru

The this paper, we considers the Cauchy problem for a class of semilinear differential inclusions in a separable Banach space involving a fractional Caputo derivative of order $q\in(0,1)$, a small parameter, and a deviant argument. We assume that the linear part of the inclusion generates a $C_0$-semigroup. In the space of continuous functions, we construct a multivalued integral operator whose fixed points are solutions. An analysis of the dependence of this operator on a parameter allows one to establish an analog of the averaging principle. We apply methods of the theory of fractional analysis and the theory of topological degree for condensing set-valued mappings.
Keywords: Cauchy problem, differential inclusion, fractional derivative, small parameter, measure of noncompactness, condensing multioperator.
Mots-clés : deviant argument
@article{INTO_2022_204_a7,
     author = {M. I. Kamenskii and G. Petrosyan},
     title = {On the averaging principle for semilinear fractional differential inclusions in a {Banach} space with a deviating argument and a small parameter},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {74--84},
     publisher = {mathdoc},
     volume = {204},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_204_a7/}
}
TY  - JOUR
AU  - M. I. Kamenskii
AU  - G. Petrosyan
TI  - On the averaging principle for semilinear fractional differential inclusions in a Banach space with a deviating argument and a small parameter
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 74
EP  - 84
VL  - 204
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_204_a7/
LA  - ru
ID  - INTO_2022_204_a7
ER  - 
%0 Journal Article
%A M. I. Kamenskii
%A G. Petrosyan
%T On the averaging principle for semilinear fractional differential inclusions in a Banach space with a deviating argument and a small parameter
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 74-84
%V 204
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_204_a7/
%G ru
%F INTO_2022_204_a7
M. I. Kamenskii; G. Petrosyan. On the averaging principle for semilinear fractional differential inclusions in a Banach space with a deviating argument and a small parameter. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings – XXXI". Voronezh, May 3-9, 2020, Tome 204 (2022), pp. 74-84. http://geodesic.mathdoc.fr/item/INTO_2022_204_a7/