Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2022_204_a7, author = {M. I. Kamenskii and G. Petrosyan}, title = {On the averaging principle for semilinear fractional differential inclusions in a {Banach} space with a deviating argument and a small parameter}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {74--84}, publisher = {mathdoc}, volume = {204}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2022_204_a7/} }
TY - JOUR AU - M. I. Kamenskii AU - G. Petrosyan TI - On the averaging principle for semilinear fractional differential inclusions in a Banach space with a deviating argument and a small parameter JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2022 SP - 74 EP - 84 VL - 204 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2022_204_a7/ LA - ru ID - INTO_2022_204_a7 ER -
%0 Journal Article %A M. I. Kamenskii %A G. Petrosyan %T On the averaging principle for semilinear fractional differential inclusions in a Banach space with a deviating argument and a small parameter %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2022 %P 74-84 %V 204 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2022_204_a7/ %G ru %F INTO_2022_204_a7
M. I. Kamenskii; G. Petrosyan. On the averaging principle for semilinear fractional differential inclusions in a Banach space with a deviating argument and a small parameter. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings – XXXI". Voronezh, May 3-9, 2020, Tome 204 (2022), pp. 74-84. http://geodesic.mathdoc.fr/item/INTO_2022_204_a7/
[1] Afanasova M. S., Petrosyan G. G., “O kraevoi zadache dlya funktsionalno-differentsialnogo vklyucheniya drobnogo poryadka s obschim nachalnym usloviem v banakhovom prostranstve”, Izv. vuzov. Mat., 2019, no. 9, 3–15 | MR | Zbl
[2] Kamenskii M. I., Makarenkov O. Yu., Nistri P., “Ob odnom podkhode v teorii obyknovennykh differentsialnykh uravnenii s malym parametrom”, Dokl. RAN., 388:4 (2003), 439–442 | MR | Zbl
[3] Petrosyan G. G., Afanasova M. S., “O zadache Koshi dlya differentsialnogo vklyucheniya drobnogo poryadka s nelineinym granichnym usloviem”, Vestn. Voronezh. un-ta. Ser. Fiz. Mat., 2017, no. 1, 135–151 | MR | Zbl
[4] Afanasova M., Liou Y. Ch., Obukhoskii V., Petrosyan G., “On the controllability for a system governed by a fractional-order semilinear functional differential inclusion in a Banach space”, J. Nonlin. Convex Anal., 20:9 (2019), 1919–1935 | MR | Zbl
[5] Appell J., Lopez B., Sadarangani K., “Existence and uniqueness of solutions for a nonlinear fractional initial value problem involving Caputo derivatives”, J. Nonlin. Var. Anal., 2:1 (2018), 25–33 | DOI | Zbl
[6] Benedetti I., Obukhovskii V., Taddei V., “On generalized boundary-value problems for a class of fractional differential inclusions”, Fract. Calc. Appl. Anal., 2017, no. 20, 1424–1446 | DOI | MR | Zbl
[7] Diestel J., Ruess W. M., Schachermayer W., “Weak compactness in $L^{1}(\mu,X)$”, Proc. Am. Math. Soc., 118 (1993), 447–453 | MR | Zbl
[8] Hilfer R., Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000 | MR | Zbl
[9] Johnson R., Nistri P., Kamenski M., “On periodic solutions of a damped wave equation in a thin domain using degree theoretic methods”, J. Differ. Equations., 140:1 (1997), 186–208 | DOI | MR | Zbl
[10] Kamenskii M. I., Obukhovskii V. V., “Condensing multioperators and periodic solutions of parabolic functional-differential inclusions in Banach spaces”, Nonlin. Anal., 20:7 (1993), 781–792 | DOI | MR | Zbl
[11] Kamenskii M., Obukhovskii V., Zecca P., Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, Walter de Gruyter, Berlin–New-York, 2001 | MR
[12] Kamenskii M., Obukhovskii V., Petrosyan G., Yao J. C., “On semilinear fractional order differential inclusions in Banach spaces”, Fixed Point Theory., 18:1 (2017), 269–292 | DOI | MR | Zbl
[13] Kamenskii M., Obukhovskii V., Petrosyan G., Yao J. C., “Boundary-value problems for semilinear differential inclusions of fractional order in a Banach space”, Appl. Anal., 97:4 (2018), 571–591 | DOI | MR | Zbl
[14] Kamenskii M., Obukhovskii V., Petrosyan G., Yao J. C., “On approximate solutions for a class of semilinear fractional-order differential equations in Banach spaces”, Fixed Point Theory Appl., 28:4 (2017), 28 | DOI | MR | Zbl
[15] Kamenskii M., Obukhovskii V., Petrosyan G., Yao J. C., “Existence and approximation of solutions to nonlocal boundary-value problems for fractional differential inclusions”, Fixed Point Theory Appl., 2019, 2 | DOI | MR | Zbl
[16] Kamenskii M., Obukhovskii V., Petrosyan G., Yao J. C., “On a periodic boundary-value problem for a fractional-order semilinear functional differential inclusions in a Banach space”, Mathematics., 7:12 (2019), 1146 | DOI | MR
[17] Ke T. D., Loi N. V., Obukhovskii V., “Decay solutions for a class of fractional differential variational inequalities”, Fract. Calc. Appl. Anal., 2015, no. 18, 531–553 | MR | Zbl
[18] Ke T. D., Obukhovskii V., Wong N. C., Yao J. C., “On a class of fractional order differential inclusions with infinite delays”, Appl. Anal., 92 (2013), 115–137 | DOI | MR | Zbl
[19] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006 | MR | Zbl
[20] Mainardi F., Rionero S., Ruggeri T., “On the initial-value problem for the fractional diffusion-wave equation”, Waves and Stability in Continuous Media, World Scientific, Singapore, 1994, 246–251 | MR
[21] Obukhovskii V. V., Gelman B. D., Multivalued Maps and Differential Inclusions. Elements of Theory and Applications, World Scientific, Singapore, 2020 | MR | Zbl
[22] Podlubny I., Fractional Differential Equations, Academic Press, San Diego, 1999 | MR | Zbl
[23] Tarasov V. E., Fractional Dynamics. Applications of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer-Verlag, London–New York, 2010 | MR | Zbl
[24] Zhang Z., Liu B., “Existence of mild solutions for fractional evolution equations”, Fixed Point Theory., 15 (2014), 325–334 | MR | Zbl
[25] Zhou Y., Fractional Evolution Equations and Inclusions: Analysis and Control, Elsevier, London, 2016 | MR | Zbl
[26] Zhou Y., Jiao F., “Existence of mild solutions for fractional neutral evolution equations”, Comput. Math. Appl., 59 (2010), 1063–1077 | DOI | MR | Zbl