On the solution of a nonstationary problem of heat and mass transfer in a multilayer medium by the method of integral representations
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings – XXXI". Voronezh, May 3-9, 2020, Tome 204 (2022), pp. 66-73
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we discuss the possibility of using the method of integral representations (the Hankel method) for solving the nonstationary problem of heat and mass transfer in a semiconductor target. Some features of this approach to problems of heat and mass transfer in homogeneous and multilayer media are studied. We consider the example of two-dimensional diffusion of minority charge carriers generated by an electron probe. We show that a number of practical problems for multilayer targets with different layer parameters can be solved by the approach developed earlier for problems of heat and mass transfer in homogeneous semiconductor targets.
Keywords:
mathematical model, differential equation of heat and mass transfer, partial derivative, Cauchy problem, electron probe, semiconductor, Hankel transform.
@article{INTO_2022_204_a6,
author = {D. V. Turtin and M. A. Stepovich and V. V. Kalmanovich and E. V. Seregina},
title = {On the solution of a nonstationary problem of heat and mass transfer in a multilayer medium by the method of integral representations},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {66--73},
publisher = {mathdoc},
volume = {204},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2022_204_a6/}
}
TY - JOUR AU - D. V. Turtin AU - M. A. Stepovich AU - V. V. Kalmanovich AU - E. V. Seregina TI - On the solution of a nonstationary problem of heat and mass transfer in a multilayer medium by the method of integral representations JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2022 SP - 66 EP - 73 VL - 204 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2022_204_a6/ LA - ru ID - INTO_2022_204_a6 ER -
%0 Journal Article %A D. V. Turtin %A M. A. Stepovich %A V. V. Kalmanovich %A E. V. Seregina %T On the solution of a nonstationary problem of heat and mass transfer in a multilayer medium by the method of integral representations %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2022 %P 66-73 %V 204 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2022_204_a6/ %G ru %F INTO_2022_204_a6
D. V. Turtin; M. A. Stepovich; V. V. Kalmanovich; E. V. Seregina. On the solution of a nonstationary problem of heat and mass transfer in a multilayer medium by the method of integral representations. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings – XXXI". Voronezh, May 3-9, 2020, Tome 204 (2022), pp. 66-73. http://geodesic.mathdoc.fr/item/INTO_2022_204_a6/