On the solution of a nonstationary problem of heat and mass transfer in a multilayer medium by the method of integral representations
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings – XXXI". Voronezh, May 3-9, 2020, Tome 204 (2022), pp. 66-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we discuss the possibility of using the method of integral representations (the Hankel method) for solving the nonstationary problem of heat and mass transfer in a semiconductor target. Some features of this approach to problems of heat and mass transfer in homogeneous and multilayer media are studied. We consider the example of two-dimensional diffusion of minority charge carriers generated by an electron probe. We show that a number of practical problems for multilayer targets with different layer parameters can be solved by the approach developed earlier for problems of heat and mass transfer in homogeneous semiconductor targets.
Keywords: mathematical model, differential equation of heat and mass transfer, partial derivative, Cauchy problem, electron probe, semiconductor, Hankel transform.
@article{INTO_2022_204_a6,
     author = {D. V. Turtin and M. A. Stepovich and V. V. Kalmanovich and E. V. Seregina},
     title = {On the solution of a nonstationary problem of heat and mass transfer in a multilayer medium by the method of integral representations},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {66--73},
     publisher = {mathdoc},
     volume = {204},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_204_a6/}
}
TY  - JOUR
AU  - D. V. Turtin
AU  - M. A. Stepovich
AU  - V. V. Kalmanovich
AU  - E. V. Seregina
TI  - On the solution of a nonstationary problem of heat and mass transfer in a multilayer medium by the method of integral representations
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 66
EP  - 73
VL  - 204
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_204_a6/
LA  - ru
ID  - INTO_2022_204_a6
ER  - 
%0 Journal Article
%A D. V. Turtin
%A M. A. Stepovich
%A V. V. Kalmanovich
%A E. V. Seregina
%T On the solution of a nonstationary problem of heat and mass transfer in a multilayer medium by the method of integral representations
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 66-73
%V 204
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_204_a6/
%G ru
%F INTO_2022_204_a6
D. V. Turtin; M. A. Stepovich; V. V. Kalmanovich; E. V. Seregina. On the solution of a nonstationary problem of heat and mass transfer in a multilayer medium by the method of integral representations. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings – XXXI". Voronezh, May 3-9, 2020, Tome 204 (2022), pp. 66-73. http://geodesic.mathdoc.fr/item/INTO_2022_204_a6/

[1] Amrastanov A. N., Seregina E. V., Stepovich M. A., “Otsenka nagreva poverkhnosti odnorodnoi metallicheskoi misheni elektronnym zondom”, Izv. RAN. Ser. fiz., 83:11 (2019), 1455–1460

[2] Amrastanov A. N., Seregina E. V., Stepovich M. A., Filippov M. N., “Otsenka nagreva poverkhnosti poluprovodnikovoi misheni nizkoenergetichnym elektronnym zondom”, Poverkhn. Rentgen. sinkhrotron. neitron. issled., 2018, no. 8, 48–52

[3] Bonch-Bruevich V. L., Kalashnikov S. G., Fizika poluprovodnikov, Nauka, M., 1990

[4] Vladimirov V. S., Zharinov V. V., Uravneniya matematicheskoi fiziki, Fizmatlit, M., 2004 | MR

[5] Gladyshev Yu. A., Kalmanovich V. V., Stepovich M. A., “O vozmozhnosti prilozheniya apparata Bersa k modelirovaniyu protsessov teplomassoperenosa, obuslovlennogo elektronami v planarnoi mnogosloinoi srede”, Poverkhn. Rentgen. sinkhrotron. neitron. issled., 2017, no. 10, 105–110

[6] Gladyshev Yu. A., Kalmanovich V. V., Seregina E. V., Stepovich M. A., “O vozmozhnosti sovmestnogo primeneniya matrichnogo metoda i apparata obobschennykh stepenei Bersa dlya matematicheskogo modelirovaniya protsessa teploperenosa v ob'ektakh, obladayuschikh tsilindricheskoi simmetriei”, Vopr. atom. nauki tekhn. Yad.-reakt. konstanty., 2018, no. 3, 158–167 | MR

[7] Gladyshev Yu. A., Kalmanovich V. V., Stepovich M. A., “O primenenii matrichnogo metoda dlya matematicheskogo modelirovaniya protsessov teploperenosa”, Mat. 20 Mezhdunar. Saratov. zimnei shkoly «Sovremennye problemy teorii funktsii i ikh prilozheniya» (Saratov, 28 yanvarya – 1 fevralya 2020 g.), Nauchnaya kniga, Sarato, 2020, 118–121

[8] Kalmanovich V. V., Seregina E. V., Stepovich M. A., “Matematicheskoe modelirovanie yavlenii teplomassoperenosa, obuslovlennykh vzaimodeistviem elektronnykh puchkov s mnogosloinymi planarnymi poluprovodnikovymi strukturami”, Izv. RAN. Ser. fiz., 84:7 (2020), 1027–1033 | MR

[9] Kalmanovich V. V., Stepovich M. A., “O sovmestnom primenenii matrichnogo metoda i apparata obobschennykh stepenei Bersa dlya matematicheskogo modelirovaniya protsessov teplomassoperenosa v poluprovodnikovykh materialakh elektronnoi tekhniki”, Probl. razrab. persp. mikro- i nanoelektron. sistem., 2018, no. 3, 194–201

[10] Korn G., Korn T., Spravochnik po matematike dlya nauchnykh rabotnikov i inzhenerov, Nauka, M., 1974

[11] Lebedev N. N., Spetsialnye funktsii i ikh razlozheniya, Uchpedgiz, M., 1963

[12] Mikheev N. N., Petrov V. I., Stepovich M. A., “Energeticheskii spektr elektronov, proshedshikh plenochnuyu mishen”, Izv. RAN. Ser. fiz., 57:9 (1993), 7–11

[13] Mikheev N. N., Stepovich M. A., Raspredelenie energeticheskikh poter pri vzaimodeistvii elektronnogo zonda s veschestvom, 62:4 (1996), 20–25

[14] Polyakov A. N., Stepovich M. A., Turtin D. V., “Trekhmernaya diffuziya eksitonov, generirovannykh elektronnym puchkom v poluprovodnikovom materiale: rezultaty matematicheskogo modelirovaniya”, Poverkhn. Rentgen. sinkhrotron. neitron. issled., 2015, no. 12, 48–52

[15] Polyakov A. N., Noltemeyer M., Hempel T., Christen J., Stepovich M. A., “Dvumernaya diffuziya i katodolyuminestsentsiya eksitonov, generirovannykh elektronnym puchkom v poluprovodnikovom materiale: rezultaty matematicheskogo modelirovaniya”, Poverkhn. Rentgen. sinkhrotron. neitron. issled., 2012, no. 11, 35–40

[16] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady. Spetsialnye funktsii, Nauka, M., 1983 | MR

[17] Seregina E. V., Kalmanovich V. V., Stepovich M. A., “O modelirovanii raspredelenii neosnovnykh nositelei zaryada, generirovannykh shirokim elektronnym puchkom v mnogosloinykh planarnykh poluprovodnikovykh strukturakh”, Poverkhn. Rentgen. sinkhrotron. neitron. issled., 2020, no. 7, 93–100 | MR

[18] Seregina E. V., Kalmanovich V. V., Stepovich M. A., “Sravnitelnyi analiz matrichnogo metoda i metoda konechnykh raznostei dlya modelirovaniya raspredeleniya neosnovnykh nositelei zaryada v mnogosloinoi planarnoi poluprovodnikovoi strukture”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obzory., 172 (2019), 108–116 | MR

[19] Stepovich M. A., Kalmanovich V. V., Seregina E. V., “O vozmozhnosti prilozheniya matrichnogo metoda k modelirovaniyu katodolyuminestsentsii, obuslovlennoi shirokim elektronnym puchkom v planarnoi mnogosloinoi poluprovodnikovoi strukture”, Izv. RAN. Ser. fiz., 84:5 (2020), 700–703 | MR

[20] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, Nauka, M., 1972 | MR

[21] Turtin D. V., Seregina E. V., Stepovich M. A., “Kachestvennyi analiz odnogo klassa differentsialnykh uravnenii teplomassoperenosa v kondensirovannom veschestve”, Probl. mat. anal., 2020, no. 104, 149–156 | Zbl

[22] Filachev A. M., Taubkin I. I., Trishenkov M. A., Tverdotelnaya fotoelektronika. Fotodiody, Fizmatkniga, M., 2011

[23] Everhart T. E., “Kilovolt electron energy dissipation in solids”, J. Appl. Phys., 31:10 (1960), 1483–1492 | DOI

[24] Kalmanovich V. V., Seregina E. V., Stepovich M. A., “Comparison of analytical and numerical modeling of distributions of nonequilibrium minority charge carriers generated by a wide beam of medium-energy electrons in a two-layer semiconductor structure”, J. Phys. Conf. Ser., 1479 (2020), 012116 | DOI

[25] Kalmanovich V. V., Seregina E. V., Stepovich M. A., “On the possibility of a numerical solution of the heat and mass transfer problem with the combined matrix and generalized powers of Bers method”, J. Phys. Conf. Ser., 1163 (2019), 012012 | DOI

[26] Kanaya K., Okayama S., “Penetration and energy-loss theory of electrons in solid targets”, J. Phys. D., 5:1 (1972), 43–58 | DOI

[27] Mikheev N. N., Stepovich M. A., “The energy spectrum of electrons passing through film targets and some of its applications to electron beam engineering”, Mat. Sci. Eng. B., 32:1-4 (1995), 1–16

[28] Noltemeyer M., Bertram F., Hempel T., Bastek B., Polyakov A., Christen J., Brandt M., Lorenz M., Grundmann M., “Excitonic transport in ZnO”, J. Mater. Research., 27:17 (2012), 2225–2231 | DOI

[29] Polyakov A. N. Smirnova A. N., Stepovich M. A., Turtin D. V., “Qualitative properties of a mathematical model of the diffusion of excitons generated by electron probe in a homogeneous semiconductor material”, Lobachevskii J. Math., 39:2 (2018), 259–262 | DOI | MR | Zbl

[30] Seregina E. V., Stepovich M. A., Kalmanovich V. V., “Modeling of heating in the epitaxial structure Cd$_x$Hg$_{1-x}$Te/CdTe with the projection least squares method”, J. Phys. Conf. Ser., 1163 (2019), 012013 | DOI

[31] Stepovich M. A., Amrastanov A. N., Seregina E. V., Filippov M. N., “Assessment of the heating of conductive targets with an electron beam. Results of computational experiment”, J. Phys. Conf. Ser., 1203 (2019), 012042 | DOI

[32] Stepovich M. A., Amrastanov A. N., Seregina E. V., Filippov M. N., “Mathematical modelling of heating of homogeneous metal targets with a focused electron beam”, J. Phys. Conf. Ser., 1163 (2019), 012014 | DOI

[33] Stepovich M. A., Amrastanov A. N., Seregina E. V., Filippov M. N., “On one peculiarity of the model describing the interaction of the electron beam with the semiconductor surface”, J. Phys. Conf. Ser., 955 (2018), 012040 | DOI

[34] Stepovich M. A., Turtin D. V., Seregina E. V., Kalmanovich V. V., “On the correctness of mathematical models of time-of-flight cathodoluminescence of direct-gap semiconductors”, ITM Web Conf., 30 (2019), 07014 | DOI

[35] Stepovich M. A., Turtin D. V., Seregina E. V., Polyakov A. N., “On the qualitative characteristics of a two-dimensional mathematical model of diffusion of minority charge carriers generated by a low-energy electron beam in a homogeneous semiconductor material”, J. Phys. Conf. Ser., 1203 (2019), 012095 | DOI

[36] Wittry D. B., Kyser D. F., “Measurements of diffusion lengths in direct-gap semiconductors by electron beam excitation”, J. Appl. Phys., 38 (1967), 1 | DOI