Partial integral Fredholm equation in anisotropic classes of Lebesgue functions on $\mathbb{R}_2$
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings – XXXI". Voronezh, May 3-9, 2020, Tome 204 (2022), pp. 53-65.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we propose a formula for representing the solution of a partial integral Fredholm equation of the second kind in the form of the corresponding Neumann series. We obtain conditions for the existence and uniqueness of this solution in the classes of Lebesgue functions $L_{\boldsymbol{p}}$, $\boldsymbol{p}=(p_1,p_2)$, defined in a finite rectangle $D=(a_1,b_1 )\times(a_2,b_2)$ of the Euclidean space $\mathbb{R}_2$.
Keywords: partial integral, Fredholm equation, resolvent, Neumann series, resonance theorem.
Mots-clés : anisotropic space
@article{INTO_2022_204_a5,
     author = {L. N. Lyakhov and A. I. Inozemtsev},
     title = {Partial integral {Fredholm} equation in anisotropic classes of {Lebesgue} functions on $\mathbb{R}_2$},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {53--65},
     publisher = {mathdoc},
     volume = {204},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_204_a5/}
}
TY  - JOUR
AU  - L. N. Lyakhov
AU  - A. I. Inozemtsev
TI  - Partial integral Fredholm equation in anisotropic classes of Lebesgue functions on $\mathbb{R}_2$
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 53
EP  - 65
VL  - 204
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_204_a5/
LA  - ru
ID  - INTO_2022_204_a5
ER  - 
%0 Journal Article
%A L. N. Lyakhov
%A A. I. Inozemtsev
%T Partial integral Fredholm equation in anisotropic classes of Lebesgue functions on $\mathbb{R}_2$
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 53-65
%V 204
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_204_a5/
%G ru
%F INTO_2022_204_a5
L. N. Lyakhov; A. I. Inozemtsev. Partial integral Fredholm equation in anisotropic classes of Lebesgue functions on $\mathbb{R}_2$. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings – XXXI". Voronezh, May 3-9, 2020, Tome 204 (2022), pp. 53-65. http://geodesic.mathdoc.fr/item/INTO_2022_204_a5/

[1] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnoe predstavlenie funktsii i teoremy vlozheniya, Nauka, M., 1975 | MR

[2] Iosida K., Funktsionalnyi analiz, Mir, M., 1967 | MR

[3] Korpusov M. O., Panin A. A., Lektsii po lineinomu i nelineinomu funktsionalnomu analizu. T. II. Spetsialnye prostranstva, Fizicheskii fakultet MGU, M., 2016

[4] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972

[5] Lyakhov L. N., Inozemtsev A. I., “Chastnye integraly v anizotropnykh klassakh Lebega. I. Dvumernyi sluchai”, Problemy matematicheskogo analiza, v. 102, SPb., 2020, 119–123 | Zbl

[6] Lyakhov L. N., Inozemtsev A. I., “Partial integrals in anisotropic Lebesgue spaces. I: Two-dimensional case”, J. Math. Sci., 247:6 (2020), 888–892 | DOI | MR | Zbl