Methods for studying differential-difference equations with incommensurable shifts of arguments
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings – XXXI". Voronezh, May 3-9, 2020, Tome 204 (2022), pp. 44-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider elliptic boundary-value problems for differential-difference equations containing incommensurable shifts of arguments in leading terms. Using the reduction of the original problem to a certain nonlocal problem, we examine the solvability of boundary-value problems, the smoothness of solutions, and spectral properties.
Keywords: elliptic differential-difference equation, incommensurable shifts of arguments, nonlocal boundary-value problem.
@article{INTO_2022_204_a4,
     author = {E. P. Ivanova},
     title = {Methods for studying differential-difference equations with incommensurable shifts of arguments},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {44--52},
     publisher = {mathdoc},
     volume = {204},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_204_a4/}
}
TY  - JOUR
AU  - E. P. Ivanova
TI  - Methods for studying differential-difference equations with incommensurable shifts of arguments
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 44
EP  - 52
VL  - 204
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_204_a4/
LA  - ru
ID  - INTO_2022_204_a4
ER  - 
%0 Journal Article
%A E. P. Ivanova
%T Methods for studying differential-difference equations with incommensurable shifts of arguments
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 44-52
%V 204
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_204_a4/
%G ru
%F INTO_2022_204_a4
E. P. Ivanova. Methods for studying differential-difference equations with incommensurable shifts of arguments. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings – XXXI". Voronezh, May 3-9, 2020, Tome 204 (2022), pp. 44-52. http://geodesic.mathdoc.fr/item/INTO_2022_204_a4/

[1] Ivanova E. P., “Nepreryvnaya zavisimost reshenii kraevykh zadach dlya differentsialno-raznostnykh uravnenii ot sdvigov argumenta”, Sovr. mat. Fundam. napr., 59 (2016), 74–96

[2] Ivanova E. P., “O koertsitivnosti differentsialno-raznostnykh uravnenii s nesoizmerimymi sdvigami argumentov”, Sovr. mat. Fundam. napr., 62 (2016), 85–99

[3] Ivanova E. P., “Kraevye zadachi dlya differentsialno-raznostnykh uravnenii s nesoizmerimymi sdvigami argumentov, svodyaschiesya k nelokalnym zadacham”, Sovr. mat. Fundam. napr., 65:4 (2019), 613–-622 | MR

[4] Ivanova E. P., “O gladkikh resheniyakh differentsialno-raznostnykh uravnenii s nesoizmerimymi sdvigami argumentov”, Mat. zametki., 105:1 (2019), 145–148 | MR | Zbl

[5] Skubachevskii A. L., “Kraevye zadachi dlya ellipticheskikh differentsialno-raznostnykh uravnenii i ikh prilozheniya”, Usp. mat. nauk., 71:5 (431) (2016), 3–112 | MR | Zbl

[6] Skubachevskii A. L., Elliptic Functional Differential Equations and Applications, Birkhäuser, Basel–Boston–Berlin, 1997 | MR | Zbl

[7] Skubachevskii A. L., “Bifurcation of periodic solutions for nonlinear parabolic functional differential equations arising in optoelectronics”, Nonlin. Anal. Theory Meth. Appl., 32:2 (1998), 261–278 | DOI | MR | Zbl