On the first initial-boundary-value problem of heat conduction in a domain with curvilinear lateral boundaries
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings – XXXI". Voronezh, May 3-9, 2020, Tome 204 (2022), pp. 146-159.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the first initial-boundary-value problem for the heat equation in a bounded domain $\Omega$ with curvilinear lateral boundaries. Using the method of boundary integral equations, we prove the existence of a solution to this problem in the class $C^{2,1}_{x,t}(\overline{\Omega})$.
Keywords: first initial-boundary-value problem, nonsmooth lateral boundary, method of boundary integral equations.
Mots-clés : parabolic equation
@article{INTO_2022_204_a14,
     author = {K. D. Fedorov},
     title = {On the first initial-boundary-value problem of heat conduction in a domain with curvilinear lateral boundaries},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {146--159},
     publisher = {mathdoc},
     volume = {204},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_204_a14/}
}
TY  - JOUR
AU  - K. D. Fedorov
TI  - On the first initial-boundary-value problem of heat conduction in a domain with curvilinear lateral boundaries
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 146
EP  - 159
VL  - 204
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_204_a14/
LA  - ru
ID  - INTO_2022_204_a14
ER  - 
%0 Journal Article
%A K. D. Fedorov
%T On the first initial-boundary-value problem of heat conduction in a domain with curvilinear lateral boundaries
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 146-159
%V 204
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_204_a14/
%G ru
%F INTO_2022_204_a14
K. D. Fedorov. On the first initial-boundary-value problem of heat conduction in a domain with curvilinear lateral boundaries. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings – XXXI". Voronezh, May 3-9, 2020, Tome 204 (2022), pp. 146-159. http://geodesic.mathdoc.fr/item/INTO_2022_204_a14/

[1] Baderko E. A., Cherepova M. F., “Potentsial prostogo sloya i pervaya kraevaya zadacha dlya parabolicheskoi sistemy na ploskosti”, Differ. uravn., 52:2 (2016), 198–208

[2] Dzyadyk V. K., Vvedenie v teoriyu ravnomernogo priblizheniya funktsii polinomami, Nauka, M., 1977 | MR

[3] Ilin A. M., Kalashnikov A. S., Oleinik O. A., “Lineinye uravneniya vtorogo poryadka parabolicheskogo tipa”, Usp. mat. nauk., 17:3 (105) (1962), 3-–146 | MR

[4] Kamynin L. I., “O reshenii metodom potentsialov osnovnykh kraevykh zadach dlya odnomernogo parabolicheskogo uravneniya vtorogo poryadka”, Sib. mat. zh., 15 (1974), 806–834 | Zbl

[5] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967 | MR

[6] Cemaan Kh., O reshenii vtoroi kraevoi zadachi dlya parabolicheskikh sistem v oblastyakh na ploskosti s negladkoi bokovoi granitsei, Dep. VINITI RAN. — 26.02.99. #567–V99

[7] Solonnikov V. A., “Apriornye otsenki dlya uravnenii vtorogo poryadka parabolicheskogo tipa”, Tr. Mat. in-ta RAN im. V. A. Steklova, 70, 1964, 133–212 | Zbl

[8] Baderko E. A., Cherepova M. F., “Bitsadze–Samarskii problem for parabolic systems with Dini continuous coefficients”, Compl. Var. Ellipt. Equ., 64:5 (2019), 753–765 | DOI | MR | Zbl