Contact problem for a second-order parabolic equation with Dini-continuous coefficients
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings – XXXI". Voronezh, May 3-9, 2020, Tome 204 (2022), pp. 135-145

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a contact problem for second-order parabolic equations with Dini-continuous coefficients in a strip divided by a nonsmooth curve into two domains. The existence and uniqueness of a regular solution to this problem is proved.
Keywords: parabolic contact problem, parabolic equation with discontinuous coefficients, method of boundary integral equations, simple layer potential.
@article{INTO_2022_204_a13,
     author = {S. I. Saharov},
     title = {Contact problem for a second-order parabolic equation with {Dini-continuous} coefficients},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {135--145},
     publisher = {mathdoc},
     volume = {204},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_204_a13/}
}
TY  - JOUR
AU  - S. I. Saharov
TI  - Contact problem for a second-order parabolic equation with Dini-continuous coefficients
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 135
EP  - 145
VL  - 204
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_204_a13/
LA  - ru
ID  - INTO_2022_204_a13
ER  - 
%0 Journal Article
%A S. I. Saharov
%T Contact problem for a second-order parabolic equation with Dini-continuous coefficients
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 135-145
%V 204
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_204_a13/
%G ru
%F INTO_2022_204_a13
S. I. Saharov. Contact problem for a second-order parabolic equation with Dini-continuous coefficients. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings – XXXI". Voronezh, May 3-9, 2020, Tome 204 (2022), pp. 135-145. http://geodesic.mathdoc.fr/item/INTO_2022_204_a13/