Contact problem for a second-order parabolic equation with Dini-continuous coefficients
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings – XXXI". Voronezh, May 3-9, 2020, Tome 204 (2022), pp. 135-145
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a contact problem for second-order parabolic equations with Dini-continuous coefficients in a strip divided by a nonsmooth curve into two domains. The existence and uniqueness of a regular solution to this problem is proved.
Keywords:
parabolic contact problem, parabolic equation with discontinuous coefficients, method of boundary integral equations, simple layer potential.
@article{INTO_2022_204_a13,
author = {S. I. Saharov},
title = {Contact problem for a second-order parabolic equation with {Dini-continuous} coefficients},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {135--145},
publisher = {mathdoc},
volume = {204},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2022_204_a13/}
}
TY - JOUR AU - S. I. Saharov TI - Contact problem for a second-order parabolic equation with Dini-continuous coefficients JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2022 SP - 135 EP - 145 VL - 204 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2022_204_a13/ LA - ru ID - INTO_2022_204_a13 ER -
%0 Journal Article %A S. I. Saharov %T Contact problem for a second-order parabolic equation with Dini-continuous coefficients %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2022 %P 135-145 %V 204 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2022_204_a13/ %G ru %F INTO_2022_204_a13
S. I. Saharov. Contact problem for a second-order parabolic equation with Dini-continuous coefficients. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings – XXXI". Voronezh, May 3-9, 2020, Tome 204 (2022), pp. 135-145. http://geodesic.mathdoc.fr/item/INTO_2022_204_a13/