On Weil algebras and Weil bundles
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Tome 203 (2021), pp. 116-129

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we discuss Weil algebras and their application in the construction of Weil bundles. We also discuss Frobenius algebras and Vishnevsky's conjecture and prove that there exist Frobenius Weil algebras whose width is greater than one. Other properties of the Frobenius Weil algebras are indicated. A brief review of the results obtained over the past three years is given.
Mots-clés : Weil algebra
Keywords: Frobenius algebra, smooth manifold, linear connection.
@article{INTO_2021_203_a9,
     author = {A. Ya. Sultanov and G. A. Sultanova and O. A. Monakhova},
     title = {On {Weil} algebras and {Weil} bundles},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {116--129},
     publisher = {mathdoc},
     volume = {203},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_203_a9/}
}
TY  - JOUR
AU  - A. Ya. Sultanov
AU  - G. A. Sultanova
AU  - O. A. Monakhova
TI  - On Weil algebras and Weil bundles
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 116
EP  - 129
VL  - 203
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_203_a9/
LA  - ru
ID  - INTO_2021_203_a9
ER  - 
%0 Journal Article
%A A. Ya. Sultanov
%A G. A. Sultanova
%A O. A. Monakhova
%T On Weil algebras and Weil bundles
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 116-129
%V 203
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_203_a9/
%G ru
%F INTO_2021_203_a9
A. Ya. Sultanov; G. A. Sultanova; O. A. Monakhova. On Weil algebras and Weil bundles. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Tome 203 (2021), pp. 116-129. http://geodesic.mathdoc.fr/item/INTO_2021_203_a9/