On Weil algebras and Weil bundles
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Tome 203 (2021), pp. 116-129.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we discuss Weil algebras and their application in the construction of Weil bundles. We also discuss Frobenius algebras and Vishnevsky's conjecture and prove that there exist Frobenius Weil algebras whose width is greater than one. Other properties of the Frobenius Weil algebras are indicated. A brief review of the results obtained over the past three years is given.
Mots-clés : Weil algebra
Keywords: Frobenius algebra, smooth manifold, linear connection.
@article{INTO_2021_203_a9,
     author = {A. Ya. Sultanov and G. A. Sultanova and O. A. Monakhova},
     title = {On {Weil} algebras and {Weil} bundles},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {116--129},
     publisher = {mathdoc},
     volume = {203},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_203_a9/}
}
TY  - JOUR
AU  - A. Ya. Sultanov
AU  - G. A. Sultanova
AU  - O. A. Monakhova
TI  - On Weil algebras and Weil bundles
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 116
EP  - 129
VL  - 203
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_203_a9/
LA  - ru
ID  - INTO_2021_203_a9
ER  - 
%0 Journal Article
%A A. Ya. Sultanov
%A G. A. Sultanova
%A O. A. Monakhova
%T On Weil algebras and Weil bundles
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 116-129
%V 203
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_203_a9/
%G ru
%F INTO_2021_203_a9
A. Ya. Sultanov; G. A. Sultanova; O. A. Monakhova. On Weil algebras and Weil bundles. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Tome 203 (2021), pp. 116-129. http://geodesic.mathdoc.fr/item/INTO_2021_203_a9/

[1] Vishnevskii V. V., “Integriruemye affinnye struktury i ikh plyuralnye interpretatsii”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obzory, 73, 2002, 5–64 | Zbl

[2] Vishnevskii V. V., Shirokov A. P., Shurygin V. V., Prostranstva nad algebrami, Izd-vo Kazan. un-ta, Kazan, 1985 | MR

[3] Kertis Ch., Rainer I., Teoriya predstavlenii konechnykh grupp i assotsiativnykh algebr, Nauka, M., 1969

[4] Sultanov A. Ya., “O liftakh v rassloeniya Veilya”, Tez. Mezhdunar. konf. «Dni geometrii v Novosibirske» (Novosibirsk, 28-31 avgusta 2013 g.), In-t mat. im. S. L. Soboleva SO RAN, Novosibirsk, 2013, 87–88

[5] Sultanov A. Ya., “Rassloeniya Veilya s sinekticheskimi svyaznostyami i otsenki razmernostei ikh algebr Li affinnykh vektornykh polei”, Tez. Mezhdunar. konf. «Dni geometrii v Novosibirske», posv. 85-letiyu akad. Yu. G. Reshetnyaka (Novosibirsk, 24-27 sentyabrya 2014 g.), In-t mat. im. S. L. Soboleva SO RAN, Novosibirsk, 2014, 68–69

[6] Sultanov A. Ya., “Nekotorye svoistva veschestvennykh realizatsii lineinykh svyaznostei nad algebrami”, Tr. Mezhdunar. konf. «Klassicheskaya i sovremennaya geometriya», posv. 100-letiyu so dnya rozhd. V. T. Bazyleva (Moskva, 22-25 aprelya 2019 g.), M., 2019, 140–141

[7] Sultanov A. Ya., “O maksimalnoi razmernosti algebr Li affinnykh vektornykh polei veschestvennykh realizatsii golomorfnykh lineinykh svyaznostei na kasatelnykh rassloeniyakh proizvolnogo poryadka”, Mat. nauch. konf. «Sovremennaya geometriya i ee prilozheniya» (Kazan, 4-7 sentyabrya 2019 g.), Kazan, 2019, 147–149

[8] Sultanov A. Ya., Monakhova O. A., “O polusimmetricheskikh gorizontalnykh liftakh lineinykh svyaznostei s bazy v rassloenie dvazhdy kovariantnykh tenzorov”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obz., 180, 2020, 96–102

[9] Sultanova G. A., “Ob otsenke razmernostei algebr Li infinitezimalnykh avtomorfizmov kasatelnykh rassloenii so svyaznostyu polnogo lifta nad neproektivno-evklidovoi svyaznostyu”, Differ. geom. mnogoobr. figur, 2016, no. 47, 146–153 | Zbl

[10] Sultanova G. A., “Ob usloviyakh integriruemosti uravnenii infinitezimalnykh preobrazovanii kasatelnykh rassloenii s nesimmetricheskoi svyaznostyu polnogo lifta”, Mat. nauch. konf. «Sovremennaya geometriya i ee prilozheniya» (Kazan, 4-7 sentyabrya 2019 g.), Kazan, 2019, 151–155

[11] Sultanova G. A., “Ob algebrakh Li infinitezimalnykh affinnykh preobrazovanii kasatelnykh rassloenii”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obz., 180, 2020, 103–108

[12] Shurygin V. V., “Rassloeniya strui kak mnogoobraziya nad algebrami”, Itogi nauki tekhn. Probl. geom., 19, 1987, 3–22 | MR

[13] Shurygin V. V., “Mnogoobraziya nad algebrami i ikh primenenie v geometrii rassloenii strui”, Usp. mat. nauk, 48:2 (290) (1993), 75–106 | MR | Zbl

[14] Morimoto A., “Liftings of some types of tensor fields and connections to tangent bundles of $p^{v}$-velocities”, Nagoya Math. J., 40 (1970), 13–31 | DOI | MR | Zbl

[15] Weil A., “Theorie des points proches sur les varietetes differentiables”, Colloq. Int. Centre Nat. Rech. Sci., 52 (1953), 111–117 | MR | Zbl