Classification of left-invariant para-Sasakian structures on five-dimensional Lie groups
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Tome 203 (2021), pp. 100-115.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, a classification of left-invariant para-Sasakian structures on five-dimensional Lie groups is given.
Mots-clés : paracomplex structure, paracontact structure
Keywords: para-Sasakian structure, five-dimensional Lie algebra, left-invariant structure on a Lie group.
@article{INTO_2021_203_a8,
     author = {N. K. Smolentsev},
     title = {Classification of left-invariant {para-Sasakian} structures on five-dimensional {Lie} groups},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {100--115},
     publisher = {mathdoc},
     volume = {203},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_203_a8/}
}
TY  - JOUR
AU  - N. K. Smolentsev
TI  - Classification of left-invariant para-Sasakian structures on five-dimensional Lie groups
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 100
EP  - 115
VL  - 203
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_203_a8/
LA  - ru
ID  - INTO_2021_203_a8
ER  - 
%0 Journal Article
%A N. K. Smolentsev
%T Classification of left-invariant para-Sasakian structures on five-dimensional Lie groups
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 100-115
%V 203
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_203_a8/
%G ru
%F INTO_2021_203_a8
N. K. Smolentsev. Classification of left-invariant para-Sasakian structures on five-dimensional Lie groups. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Tome 203 (2021), pp. 100-115. http://geodesic.mathdoc.fr/item/INTO_2021_203_a8/

[1] Alekseevskii D. V., Medori K., Tomassini A., “Odnorodnye parakelerovy mnogoobraziya Einshteina”, Usp. mat. nauk, 64:1 (385), 3-–50 | MR | Zbl

[2] Kobayasi Sh., Nomidzu K., JOsnovy differentsialnoi geometrii, v. 1, 2, Nauka, M., 1981 | MR

[3] Smolentsev N. K., “Levoinvariantnye parasasakievy struktury na gruppakh Li”, Vestn. Tomsk. un-ta. Mat. mekh., 2019, no. 62, 27–37

[4] Andrada A., Barberis M. L., Dotti I. G., Ovando G., “Product structures on four-dimensional solvable Lie algebras”, Homology Homotopy Appl., 7 (2005), 9–37 | DOI | MR | Zbl

[5] Blair D. E., Contact Manifolds in Riemannian Geometry, Springer-Verlag, Berlin–Heidelberg–New York, 1976 | MR | Zbl

[6] Calvaruso G., “Symplectic, complex and Kähler structures on four-dimensional generalized symmetric spaces”, Differ. Geom. Appl., 29 (2011), 758–769 | DOI | MR | Zbl

[7] Calvaruso G., “A complete classification of four-dimensional para-Kähler Lie algebras”, Complex Manifolds, 2:1 (2015), 733–748 | DOI | MR

[8] Calvaruso G., Fino A., “Complex and paracomplex structures on homogeneous pseudo-Riemannian four-manifolds”, Int. J. Math., 24 (2013), 1250130 | DOI | MR | Zbl

[9] Calvaruso G., Perrone A., “Five-dimensional paracontact Lie algebras”, Differ. Geom. Appl., 45 (2016), 115–129 | DOI | MR | Zbl

[10] Conti D., Rossi F. A., Einstein nilpotent Lie groups, arXiv: 1707.04454 [math.DG] | MR

[11] Cruceanu V., Fortuny P., Gadea P. M., “A survey on paracomplex geometry”, Rocky Mount. J. Math., 26 (1996), 83–115 | DOI | MR | Zbl

[12] Diatta A., “Left-invariant contact structures on Lie groups”, Differ. Geom. Appl., 26:5 (2008), 544–552 | DOI | MR | Zbl

[13] Goze M., Khakimdjanov Y., Medina A., “Symplectic or contact structures on Lie groups”, Differ. Geom. Appl., 21:1 (2004), 41–-54 | DOI | MR | Zbl

[14] Goze M., Remm E., “Contact and Frobeniusian forms on Lie groups”, Differ. Geom. Appl., 35 (2014), 74–-94 | DOI | MR | Zbl

[15] Ovando G., “Invariant complex structures on solvable real Lie groups”, Manuscr. Math., 103 (2000), 19–30 | DOI | MR | Zbl

[16] Ovando G., “Four-dimensional symplectic Lie algebras”, Beiträge Algebra Geom., 47:2 (2006), 419–434 | MR | Zbl

[17] Ovando G., “Invariant pseudo-Kähler metrics in dimension four”, J. Lie Theory, 16 (2006), 371–391 | MR | Zbl