Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2021_203_a8, author = {N. K. Smolentsev}, title = {Classification of left-invariant {para-Sasakian} structures on five-dimensional {Lie} groups}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {100--115}, publisher = {mathdoc}, volume = {203}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2021_203_a8/} }
TY - JOUR AU - N. K. Smolentsev TI - Classification of left-invariant para-Sasakian structures on five-dimensional Lie groups JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 100 EP - 115 VL - 203 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_203_a8/ LA - ru ID - INTO_2021_203_a8 ER -
%0 Journal Article %A N. K. Smolentsev %T Classification of left-invariant para-Sasakian structures on five-dimensional Lie groups %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 100-115 %V 203 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_203_a8/ %G ru %F INTO_2021_203_a8
N. K. Smolentsev. Classification of left-invariant para-Sasakian structures on five-dimensional Lie groups. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Tome 203 (2021), pp. 100-115. http://geodesic.mathdoc.fr/item/INTO_2021_203_a8/
[1] Alekseevskii D. V., Medori K., Tomassini A., “Odnorodnye parakelerovy mnogoobraziya Einshteina”, Usp. mat. nauk, 64:1 (385), 3-–50 | MR | Zbl
[2] Kobayasi Sh., Nomidzu K., JOsnovy differentsialnoi geometrii, v. 1, 2, Nauka, M., 1981 | MR
[3] Smolentsev N. K., “Levoinvariantnye parasasakievy struktury na gruppakh Li”, Vestn. Tomsk. un-ta. Mat. mekh., 2019, no. 62, 27–37
[4] Andrada A., Barberis M. L., Dotti I. G., Ovando G., “Product structures on four-dimensional solvable Lie algebras”, Homology Homotopy Appl., 7 (2005), 9–37 | DOI | MR | Zbl
[5] Blair D. E., Contact Manifolds in Riemannian Geometry, Springer-Verlag, Berlin–Heidelberg–New York, 1976 | MR | Zbl
[6] Calvaruso G., “Symplectic, complex and Kähler structures on four-dimensional generalized symmetric spaces”, Differ. Geom. Appl., 29 (2011), 758–769 | DOI | MR | Zbl
[7] Calvaruso G., “A complete classification of four-dimensional para-Kähler Lie algebras”, Complex Manifolds, 2:1 (2015), 733–748 | DOI | MR
[8] Calvaruso G., Fino A., “Complex and paracomplex structures on homogeneous pseudo-Riemannian four-manifolds”, Int. J. Math., 24 (2013), 1250130 | DOI | MR | Zbl
[9] Calvaruso G., Perrone A., “Five-dimensional paracontact Lie algebras”, Differ. Geom. Appl., 45 (2016), 115–129 | DOI | MR | Zbl
[10] Conti D., Rossi F. A., Einstein nilpotent Lie groups, arXiv: 1707.04454 [math.DG] | MR
[11] Cruceanu V., Fortuny P., Gadea P. M., “A survey on paracomplex geometry”, Rocky Mount. J. Math., 26 (1996), 83–115 | DOI | MR | Zbl
[12] Diatta A., “Left-invariant contact structures on Lie groups”, Differ. Geom. Appl., 26:5 (2008), 544–552 | DOI | MR | Zbl
[13] Goze M., Khakimdjanov Y., Medina A., “Symplectic or contact structures on Lie groups”, Differ. Geom. Appl., 21:1 (2004), 41–-54 | DOI | MR | Zbl
[14] Goze M., Remm E., “Contact and Frobeniusian forms on Lie groups”, Differ. Geom. Appl., 35 (2014), 74–-94 | DOI | MR | Zbl
[15] Ovando G., “Invariant complex structures on solvable real Lie groups”, Manuscr. Math., 103 (2000), 19–30 | DOI | MR | Zbl
[16] Ovando G., “Four-dimensional symplectic Lie algebras”, Beiträge Algebra Geom., 47:2 (2006), 419–434 | MR | Zbl
[17] Ovando G., “Invariant pseudo-Kähler metrics in dimension four”, J. Lie Theory, 16 (2006), 371–391 | MR | Zbl