Voir la notice du chapitre de livre
@article{INTO_2021_203_a6,
author = {K. V. Polyakova},
title = {Canonical affine connections of the first and second orders},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {71--83},
year = {2021},
volume = {203},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2021_203_a6/}
}
TY - JOUR AU - K. V. Polyakova TI - Canonical affine connections of the first and second orders JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 71 EP - 83 VL - 203 UR - http://geodesic.mathdoc.fr/item/INTO_2021_203_a6/ LA - ru ID - INTO_2021_203_a6 ER -
K. V. Polyakova. Canonical affine connections of the first and second orders. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Tome 203 (2021), pp. 71-83. http://geodesic.mathdoc.fr/item/INTO_2021_203_a6/
[1] Akivis M. A., Mnogomernaya differentsialnaya geometriya, Kalinin, 1977
[2] Belova O. O., “Svyaznosti v rassloeniyakh, assotsiirovannykh s mnogoobraziem Grassmana i prostranstvom tsentrirovannykh ploskostei”, Fundam. prikl. mat., 14:2 (2008), 29–67 | MR
[3] Belova O. O., “Grassmanopodobnoe mnogoobrazie tsentrirovannykh ploskostei”, Mat. zametki., 104:6 (2018), 812–822 | Zbl
[4] Bishop R., Krittenden R., Geometriya mnogoobrazii, Mir, M., 1967
[5] Vasilev A. M., “Differentsialnaya algebra”, Itogi nauki tekhn. Ser. Probl. geom., 10 (1978), 5–23
[6] Evtushik L. E., Lumiste Yu. G., Ostianu N. M., Shirokov A. P., “Differentsialno-geometricheskie struktury na mnogoobraziyakh”, Itogi nauki tekhn. Ser. Probl. geom., 9 (1979), 5–246
[7] Laptev G. F., “Osnovnye infinitezimalnye struktury vysshikh poryadkov na gladkom mnogoobrazii”, Tr. geom. semin. VINITI., 1 (1966), 139–189 | Zbl
[8] Polyakova K. V., “Kovariantnye differentsialy i kovariantnye proizvodnye, assotsiirovannye s poverkhnostyu proektivnogo prostranstva”, Vestn. Balt. feder. un-ta im. I. Kanta., 2013, no. 10, 60–63
[9] Polyakova K. V., “Spetsialnye affinnye svyaznosti 1-go i 2-go poryadkov”, Differ. geom. mnogoobr. figur., 2015, no. 46, 114–128 | Zbl
[10] Polyakova K. V., “O zadanii affinnoi svyaznosti 2-go poryadka vektornoznachnymi formami 1-go, 2-go i 3-go poryadkov”, Differ. geom. mnogoobr. figur., 2016, no. 47, 108–125 | Zbl
[11] Polyakova K. V., “Tangentsialnoznachnye formy 2-go poryadka”, Mat. zametki., 105:1 (2019), 84–94 | MR | Zbl
[12] Polyakova K. V., “Normali na mnogoobrazii i porozhdayuschie ikh otobrazheniya”, Differ. geom. mnogoobr. figur., 2019, no. 50, 110–125 | Zbl
[13] Rybnikov A. K., “Ob affinnykh svyaznostyakh vtorogo poryadka”, Mat. zametki., 29:2 (1981), 279–290 | MR | Zbl
[14] Rybnikov A. K., “Ob obobschennykh affinnykh svyaznostyakh vtorogo poryadka”, Izv. vuzov. Mat., 1983, no. 1, 73–80 | Zbl
[15] Shevchenko Yu. I., “Svyaznost v prodolzhenii glavnogo rassloeniya”, Differ. geom. mnogoobr. figur., 1991, no. 22, 117–127 | Zbl
[16] Shevchenko Yu. I., “Priemy Lapteva i Lumiste zadaniya svyaznosti v glavnom rassloenii”, Differ. geom. mnogoobr. figur., 2006, no. 37, 179–187 | Zbl
[17] Catuogno P., “A geometric Itô formula”, Mat. Contemp., 33 (2005), 85–99 | MR
[18] Emery M., “An invitation to second-order stochastic differential geometry”, https://hal.archives-ouvertes.fr/hal-00145073
[19] Janyska J., Kolář I., “On the connections naturally induced on the second order frame bundle”, Arch. Math., 22:1 (1986), 21–28 | MR | Zbl
[20] Polyakova K. V., “Prolongations generated by horizontal vectors”, J. Geom., 110 (2019), 53 | DOI | MR | Zbl
[21] Schwartz L., Géométrie différentielle du 2ème ordre, semi-martingales et équations différentielles stochastiques sur une variété différentielle, Springer, Berlin, 1982 | MR