Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2021_203_a4, author = {J. Mike\v{s} and S. Formella and I. Hinterleitner and N. I. Guseva}, title = {Some questions of geodesic mappings of {Einstein} spaces}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {50--61}, publisher = {mathdoc}, volume = {203}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2021_203_a4/} }
TY - JOUR AU - J. Mikeš AU - S. Formella AU - I. Hinterleitner AU - N. I. Guseva TI - Some questions of geodesic mappings of Einstein spaces JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 50 EP - 61 VL - 203 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_203_a4/ LA - ru ID - INTO_2021_203_a4 ER -
%0 Journal Article %A J. Mikeš %A S. Formella %A I. Hinterleitner %A N. I. Guseva %T Some questions of geodesic mappings of Einstein spaces %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 50-61 %V 203 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_203_a4/ %G ru %F INTO_2021_203_a4
J. Mikeš; S. Formella; I. Hinterleitner; N. I. Guseva. Some questions of geodesic mappings of Einstein spaces. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Tome 203 (2021), pp. 50-61. http://geodesic.mathdoc.fr/item/INTO_2021_203_a4/
[1] Berezovskii V. E., Kovalev L. E., Mikesh I., “O sokhranenii tenzora Rimana otnositelno nekotorykh otobrazhenii prostranstv affinnoi svyaznosti”, Izv. vuzov. Mat., 2018, no. 9, 3–10 | MR | Zbl
[2] Besse A., Mnogoobraziya Einshteina, Mir, M., 1990
[3] Ginterleitner I., Guseva N. I., Mikesh I., “O geodezicheskoi opredelennosti tochkami podobiya”, Itogi nauki i tekhn. Ser. Sovrem. mat. prilozh. Temat. obz., 182 (2020), 19–27
[4] Evtushik L. E., Ginterleitner I., Guseva N. I., Mikesh I., “Konformnye otobrazheniya na prostranstva Einshteina”, Izv. vuzov. Mat., 2016, no. 10, 8–13 | MR | Zbl
[5] Kagan V. F., Osnovy teorii poverkhnostei, OGIZ, M.-L., 1947-1948.
[6] Kiosak V. A., Mikesh I., “O geodezicheskikh otobrazheniyakh prostranstv Einshteina”, Izv. vuzov. Mat., 2003, no. 11, 36–-41 | MR | Zbl
[7] Mikesh I., Geodezicheskie otobrazheniya polusimmetricheskikh rimanovykh prostranstv, Dep. v VINITI No 3924-76. — 1976.
[8] Mikesh I., “O nekotorykh klassakh rimanovykh prostranstv, zamknutykh otnositelno geodezicheskikh otobrazhenii”, Tez. VII Vsesoyuzn. konf. po sovr. differentsialnoi geometrii (Minsk, 1979.), Minsk, 1979, 126
[9] Mikesh I., Geodezicheskie i golomorfno proektivnye otobrazheniya spetsialnykh rimanovykh prostranstv, Diss. na soisk. uch. step. kand. fiz.-mat. nauk, Odessa, 1979
[10] Mikesh I., “O geodezicheskikh otobrazheniyakh Richchi 2-simmetricheskikh rimanovykh prostranstv”, Mat. zametki., 28:2 (1980), 313–317 | MR | Zbl
[11] Mikesh I., “O geodezicheskikh otobrazheniyakh prostranstv Einshteina”, Mat. zametki., 28:6 (1980), 935–-938 | MR | Zbl
[12] Mikesh I., “Ob ekvidistantnykh kelerovykh prostranstvakh”, Mat. zametki., 38:4 (1985), 627–-633 | MR | Zbl
[13] Mikesh I., “O sasakievykh i ekvidistantnykh kelerovykh prostranstvakh”, Dokl. AN SSSR., 291:1 (1986), 33–-36 | MR
[14] Mikesh I., “O suschestvovanii $n$-mernykh kompaktnykh rimanovykh prostranstv, dopuskayuschikh netrivialnye proektivnye preobrazovaniya «v tselom»”, Dokl. AN SSSR., 305:3 (1989), 534–-536 | MR | Zbl
[15] Mikesh I., Ginterleitner I., “Ob odnom variatsionnom svoistve geodezicheskikh v rimanovykh i finslerovykh prostranstvakh”, Vestn. Tver. un-ta. Ser. Prikl. mat., 8 (2008), 59–63
[16] Mikesh I., Ginterleitner I., Guseva N. I., “Geodezicheskie otobrazheniya «v tselom» Richchi-ploskikh prostranstv s $n$ polnymi geodezicheskimi liniyami”, Mat. zametki., 108:2 (2020), 306–310 | MR | Zbl
[17] Mikesh I., Kiosak V. A., O geodezicheskikh otobrazheniyakh chetyrekhmernykh prostranstv Einshteina, Dep. v VINITI No 1678-82. — 1982.
[18] Norden A. P., Prostranstva affinnoi svyaznosti, Nauka, M., 1976 | MR
[19] Petrov A. Z., “O geodezicheskom otobrazhenii prostranstv Einshteina”, Izv. vuzov. Mat., 1961, no. 2, 130–136 | Zbl
[20] Petrov A. Z., Novye metody v obschei teorii otnositelnosti, Nauka, M., 1966
[21] Sinyukov N. S., “Ekvidistantnye rimanovy prostranstva”, Nauch. ezhegodnik Odessk. un-ta, Odessa, 1957, 133–135
[22] Sinyukov N. S., “Ob odnom invariantnom preobrazovanii rimanovykh prostranstv s obschimi geodezicheskimi”, Dokl. AN SSSR., 137:6 (1961), 1312–1314 | Zbl
[23] Sinyukov N. S., Geodezicheskie otobrazheniya rimanovykh prostranstv, Nauka, M., 1979 | MR
[24] Sinyukova E. N., “O geodezicheskikh otobrazheniyakh nekotorykh spetsialnykh rimanovykh prostranstv”, Mat. zametki., 30:6 (1981), 889–894 | MR | Zbl
[25] Solodovnikov A. S., “Proektivnye preobrazovaniya rimanovykh prostranstv”, Usp. mat. nauk., 11:4 (70) (1956), 45–116 | MR | Zbl
[26] Solodovnikov A. S., “Geometricheskoe opisanie vsekh vozmozhnykh predstavlenii rimanovoi metriki v forme Levi-Chivity”, Tr. semin. vektor. tenzor. anal., 1963, no. 12, 131–173 | MR | Zbl
[27] Stepanov S. E., “K globalnoi teorii proektivnykh otobrazhenii”, Mat. zametki., 58:1 (1995), 111–118 | MR | Zbl
[28] Stepanov S. E., “O nekotorykh konformnykh i proektivnykh skalyarnykh invariantakh rimanova mnogoobraziya”, Mat. zametki., 80:6 (2006), 902–907 | MR | Zbl
[29] Fomenko V. T., “Ob opredelennosti zamknutykh poverkhnostei”, Dokl. RAN., 407:4 (2006), 453–456 | MR | Zbl
[30] Shirokov P. A., Izbrannye raboty po geometrii, Izd. Kazansk. un-ta, Kazan, 1966 | MR
[31] Eizenkhart L. P., Rimanova geometriya, IL, M., 1948
[32] Yano K., Bokhner S., Krivizna i chisla Betti, IL, M., 1957
[33] Alexandrova I. A., Mikeš J., Stepanov S. E., Tsyganok I. I., “Theorems of Liouville types in theory mappings of the complete Riemannian manifolds”, J. Math. Sci., 221:6 (2017), 737–744 | DOI | MR
[34] Aminova A. V., “On geodesic mappings of the Riemannian spaces”, Tensor (N.S.)., 46 (1987), 179–186 | Zbl
[35] Brinkmann H. W., “Einstein spaces which are mapped conformally on each other”, Math. Ann., 94 (1925), 119––145 | DOI | MR | Zbl
[36] Chudá H., Mikeš J., “First quadratic integral of geodesics with certain initial conditions”, Proc. 6 Int. Conf. on Applied Mathematics APLIMAT (Bratislava, Slovak Republic, February 6-9, 2007), Bratislava, 2007, 85–88
[37] Chudá H., Mikeš J., “Conformally geodesic mappings satisfying a certain initial condition”, Arch. Math. (Brno)., 47 (2011), 389–394 | MR | Zbl
[38] Ćirić M., Zlatanović M., Stanković M., Velimirović Lj., “On geodesic mappings of equidistant generalized Riemannian spaces”, Appl. Math. Comput., 218 (2012), 6648–6655 | MR | Zbl
[39] DeTurck D. M., Kazdan J. L., “Some regularity theorems in Riemannian geometry”, Ann. Sci. Éc. Norm. Supér. (4)., 14:3 (1981), 249–260 | DOI | MR | Zbl
[40] Formella S., “Geodesic mappings of Riemannian manifolds onto Einstein manifolds”, Tensor (N.S.)., 39 (1982), 141–147 | MR | Zbl
[41] Formella S., “Geodesic mappings between Einstein manifolds”, Pr. Nauk. Politech. Szczec. Inst. Mat., 323:9 (1987), 41–47 | Zbl
[42] Formella S., “On geodesic mappings in some Riemannian and pseudo-Riemannian manifolds”, Tensor (N.S.)., 46 (1987), 311–315 | Zbl
[43] Formella S., “On geodesic mappings in Einstein manifolds”, Colloq. Math. Soc. J. Bolyai., 46 (1988), 483–492 | MR | Zbl
[44] Formella S., “Generalized Einstein manifolds”, Rend. Circ. Mat. Palermo (2). Suppl., 22 (1990), 49–58 | MR | Zbl
[45] Formella S., “On generalized Ricci-recurrent Riemannian manifolds”, Pr. Nauk. Politech. Szczec. Inst. Mat., 411:12 (1991), 15–23 | Zbl
[46] Formella S., “Projective structures in Sinyukov manifolds”, Colloq. Math. Soc. J. Bolyai., 56 (1992), 263–271 | MR | Zbl
[47] Formella S., “Geodesic mappings of pseudo-Riemannian manifolds”, Demonstr. Math., 27:2 (1994), 449–460 | MR | Zbl
[48] Formella S., “On some class of nearly conformally symmetric manifolds”, Colloq. Math., 68:1 (1995), 149–164 | DOI | MR | Zbl
[49] Formella S., “A note on geodesic and almost geodesic mappings of homogeneous Riemannian manifolds”, Opusc. Math., 25:2 (2005), 181–187 | MR | Zbl
[50] Formella S., Makowski J., “On a class of projectively Ricci-flat Riemannian manifolds”, Pr. Nauk. Politech. Szczec. Inst. Mat., 326:10 (1987), 91–95 | Zbl
[51] Formella S., Mikeš J., “Geodesic mappings of Einstein spaces”, Ann. Sci. Stetin., 9 (1994), 31–40 | MR
[52] Formella S., Policht J., “On geodesic Ricci-flat Riemannian manifolds”, Pr. Nauk. Politech. Szczec. Inst. Mat., 323:9 (1987), 49–55 | Zbl
[53] Formella S., Policht J., “On Riemannian manifolds admitting conformal and geodesic mappings”, Pr. Nauk. Politech. Szczec. Inst. Mat., 326:10 (1987), 97–102 | Zbl
[54] Hall G., “Projective structure in space-times”, Proc. Int. Conf. “Advances in Lorentzian Geometry” (Berlin, November 18–21, 2009), Am. Math. Soc., Providence, Rhode Island, 2011, 71–79 | MR | Zbl
[55] Hinterleitner I., “Conformally-projective harmonic diffeomorphisms of equidistant manifolds”, Proc. XV Int. Workshop on Geometry and Physics (Puerto de la Cruz, Spain, September 11–16, 2006), Real Sociedad Matemática Española, Madrid, 2007, 298–303 | MR | Zbl
[56] Hinterleitner I., “Special mappings of equidistant spaces”, J. Appl. Math., 2 (2008), 31–36
[57] Hinterleitner I., “On global geodesic mappings of ellipsoids”, AIP Conf. Proc., 1460 (2012), 180–184 | DOI
[58] Hinterleitner I., “Geodesic mappings on compact Riemannian manifolds with conditions on sectional curvature”, Publ. Inst. Math., 94 (108) (2013), 125–130 | DOI | MR | Zbl
[59] Hinterleitner I., Mikeš J., “On the equations of conformally-projective harmonic mappings”, AIP Conf. Proc., 956 (2007), 141–148 | DOI | MR | Zbl
[60] Hinterleitner I., Mikeš J., “Projective equivalence and spaces with equi-affine connection”, J. Math. Sci., 177 (2011), 546–550 | DOI | MR | Zbl
[61] Hinterleiner I., Mikeš J., “Fundamental equations of geodesic mappings and their generalizations”, J. Math. Sci., 174 (2011), 537–554 | DOI | MR
[62] Hinterleiner I., Mikeš J., “Geodesic mappings of (pseudo-) Riemannian manifolds preserve class of differentiability”, Miskolc Math. Notes., 14 (2013), 89–96 | DOI | MR
[63] Hinterleitner I., Mikeš J., “Geodesic mappings and Einstein spaces”, Geometric Methods in Physics, Birkhäuser, Basel, 2013, 331–335 | DOI | MR | Zbl
[64] Hinterleitner I., Mikeš J., “Geodesic mappings and differentiability of metrics, affine and projective connections”, Filomat., 29 (2015), 1245–1249 | DOI | MR | Zbl
[65] Hinterleiner I., Mikeš J., “Geodesic mappings onto Riemannian manifolds and differentiability”, Proc. 18 Int. Conf. on Geometry, Integrability, and Quantization (Varna, Bulgaria, June 3–8, 2016), Avangard Prima, Sofia, 2017, 183–190 | MR
[66] Kiosak V., Matveev V. S., “Complete Einstein metrics are geodesically rigid”, Commun. Math. Phys., 289:1 (2009), 383–400 | DOI | MR | Zbl
[67] Kuzmina I., Mikeš J., “On pseudoconformal models of fibrations determined by the algebra of antiquaternions and projectivization of them”, Ann. Math. Inform., 42 (2013), 57–64 | MR | Zbl
[68] Lagrange J. L., “Sur la construction des cartes géographiques”, Nouveaux mémoires de l'Académie royale des sciences et belles-lettres de Berlin., 1779, no. 4, 637–692
[69] Levi-Civita T., “Sulle trasformazioni dello equazioni dinamiche”, Ann. Mat. Milano., 24 (1896), 255–300 | Zbl
[70] Mikeš J., “Geodesic mappings of special Riemannian spaces”, Colloq. Math. Soc. J. Bolyai., 46 (1988), 793–813 | MR | Zbl
[71] Mikeš J., “On existence of nontrivial global geodesic mappings on $n$-dimensional compact surfaces of revolution”, Proc. Int. Conf. “Differential Geometry and Its Applications” (Brno, Czechoslovakia, August 27 – September 2, 1989), World Scientific, Singapore, 1990, 129–137 | MR | Zbl
[72] Mikeš J., “Global geodesic mappings and their generalizations for compact Riemannian spaces”, Silesian Univ. Math. Publ. Opava., 1 (1993), 143–149 | MR | Zbl
[73] Mikeš J., “Geodesic mappings of affine-connected and Riemannian spaces”, J. Math. Sci., 78 (1996), 311–333 | DOI | MR | Zbl
[74] Mikeš J., Berezovski V., “Geodesic mappings of affine-connected spaces onto Riemannian spaces”, Colloq. Math. Soc. J. Bolyai., 56 (1992), 491–494 | MR | Zbl
[75] Mikeš J., Berezovski V., Stepanova E., Chudá H., “Geodesic mappings and their generalizations”, J. Math. Sci., 217:5 (2016), 607–623 | DOI | MR | Zbl
[76] Mikeš J., Chudá H., “On geodesic mappings with certain initial conditions”, Acta Math. Acad. Paedagog. Nyházi., 26 (2010), 337–341 | MR | Zbl
[77] Mikeš J., Chudá H., Hinterleitner I., “Conformal holomorphically projective mappings of almost Hermitian manifolds with a certain initial condition”, Int. J. Geom. Methods Mod. Phys., 11:5 (2014), 1450044 | DOI | MR | Zbl
[78] Mikeš J., Hinterleitner I., Guseva N., “There are no conformal Einstein rescalings of pseudo-Riemannian Einstein spaces with $n$ complete light-like geodesics”, Mathematics., 7:9 (2019), 801 | DOI
[79] Mikeš J., Stepanova E., Vanžurová A., Differential Geometry of Special Mappings, Palacky Univ. Press, Olomouc, 2015 | MR | Zbl
[80] Mikeš J., Stepanova E., Vanžurová A., Differential Geometry of Special Mappings. 2nd ed., Palacky Univ. Press, Olomouc, 2019 | MR
[81] Mikeš J., Vanžurová A., Hinterleitner I., Geodesic Mappings and Some Generalizations, Palacky Univ. Press, Olomouc, Czech Republic, 2009 | MR | Zbl
[82] Najdanović M., Zlatanović M., Hinterleitner I., “Conformal and geodesic mappings of generalized equidistant spaces”, Publ. Inst. Math. Beograd (N.S.)., 98 (112) (2015), 71–84 | DOI | MR | Zbl
[83] Rýparová L., Mikeš J., “On global geodesic mappings of quadrics of revolution”, Proc. 16 Int. Conf. on Applied Mathematics APLIMAT (Bratislava, Slovak Republic, January 31 -– February 2, 2017), Bratislava, 2017, 1342–1348
[84] Rýparová L., Mikeš J., “On geodesic bifurcations”, Proc. 18 Int. Conf. on Geometry, Integrability, and Quantization (Varna, Bulgaria, June 3–8, 2016), Avangard Prima, Sofia, 2017, 217–224 | MR | Zbl
[85] Rýparová L., Mikeš J., “Bifurcation of closed geodesics”, Proc. 19 Int. Conf. on Geometry, Integrability, and Quantization (Varna, Bulgaria, June 2–7, 2017), Avangard Prima, Sofia, 2018, 188–192 | MR | Zbl
[86] Rýparová L., Mikeš J., “On geodesic bifurcations of product spaces”, J. Math. Sci., 239:1 (2019), 86–91 | DOI | MR | Zbl
[87] Shen Z., “On projectively related Einstein metrics in Riemann–Finsler geometry”, Math. Ann., 320:4 (2001), 625–647 | DOI | MR | Zbl
[88] Stanković M., Mincić S., Velimirović Lj., Zlatanović M., “On equitorsion geodesic mappings of general affine connection spaces”, Rend. Semin. Mat. Univ. Padova., 124 (2010), 77–90 | DOI | MR | Zbl
[89] Stepanov S., “Vanishing theorems in affine, Riemannian, and Lorenz geometries”, J. Math. Sci., 141:1 (2007), 929–964 | DOI | MR
[90] Stepanov S., Shandra I., Mikeš J., “Harmonic and projective diffeomorphisms”, J. Math. Sci., 207 (2015), 658–668 | DOI | MR | Zbl
[91] Venzi P., “Klassifikation der geodaetischen Abbildungen $\overline{\operatorname{Ric}}-\operatorname{Ric}= J\cdot g$”, Tensor (N.S.)., 37 (1982), 137–147 | MR | Zbl