Structural equations of the Cartan connection with the curvature-torsion quasi-tensor
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Tome 203 (2021), pp. 130-138.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using a two-tier principal connection, we construct an interpretation of the Cartan connection, which is not a connection in the principal bundle, and obtain its structural equations in two forms. We prove that in the classical structural equations, the curvature-torsion object is a tensor, which becomes a quasi-tensor under reduction of the equations.
Keywords: principal bundle, extended principal bundle, Laptev's lemma, semiholonomy, Cartan–Laptev theorem, curvature tensor, gluing, curvature-torsion tensor.
Mots-clés : principal connection, Cartan's connection
@article{INTO_2021_203_a10,
     author = {Yu. I. Shevchenko and E. V. Skrydlova},
     title = {Structural equations of the {Cartan} connection with the curvature-torsion quasi-tensor},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {130--138},
     publisher = {mathdoc},
     volume = {203},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_203_a10/}
}
TY  - JOUR
AU  - Yu. I. Shevchenko
AU  - E. V. Skrydlova
TI  - Structural equations of the Cartan connection with the curvature-torsion quasi-tensor
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 130
EP  - 138
VL  - 203
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_203_a10/
LA  - ru
ID  - INTO_2021_203_a10
ER  - 
%0 Journal Article
%A Yu. I. Shevchenko
%A E. V. Skrydlova
%T Structural equations of the Cartan connection with the curvature-torsion quasi-tensor
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 130-138
%V 203
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_203_a10/
%G ru
%F INTO_2021_203_a10
Yu. I. Shevchenko; E. V. Skrydlova. Structural equations of the Cartan connection with the curvature-torsion quasi-tensor. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Tome 203 (2021), pp. 130-138. http://geodesic.mathdoc.fr/item/INTO_2021_203_a10/

[1] Evtushik L. E., “Svyaznosti Kartana i geometriya prostranstv Kavaguti, poluchennye metodom podvizhnogo repera”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obz., 30, 2002, 170–204

[2] Evtushik L. E., Struktury vysshikh poryadkov, M., 2014 | MR

[3] Evtushik L. E., Lumiste Yu. G., Ostianu N. M., Shirokov A. P., “Differentsialno-geometricheskie struktury na mnogoobraziyakh”, Probl. geom., 9 (1979), 3–248

[4] Kobayasi Sh., Gruppy preobrazovanii v differentsialnoi geometrii, Nauka, M., 1986

[5] Laptev G. F., “Osnovnye infinitezimalnye struktury vysshikh poryadkov na gladkom mnogoobrazii”, Tr. geom. semin. VINITI, 1 (1966), 139–189 | Zbl

[6] Laptev G. F., “Strukturnye uravneniya glavnogo rassloeniya”, Tr. geom. semin. VINITI, 2 (1969), 161–178

[7] Lumiste Yu. G., “Svyaznosti v odnorodnykh rassloeniyakh”, Mat. sb., 69:3 (1966), 434–469 | Zbl

[8] Lumiste Yu. G., “Matrichnoe predstavlenie polugolonomnoi differentsialnoi gruppy i strukturnye uravneniya rassloeniya $p$-koreperov”, Tr. geom. semin. VINITI., 5 (1974), 239–257 | Zbl

[9] Shevchenko Yu. I., Osnaschenie golonomnykh i negolonomnykh gladkikh mnogoobrazii, Kaliningrad, 1998

[10] Shevchenko Yu. I., “Priemy Lapteva i Lumiste zadaniya svyaznosti v glavnom rassloenii”, Differ. geom. mnogoobr. figur, 2006, no. 37, 179–187 | Zbl

[11] Shevchenko Yu. I., “Golonomnye i polugolonomnye podmnogoobraziya gladkikh mnogoobrazii”, Differ. geom. mnogoobr. figur, 2015, no. 46, 168–177 | Zbl

[12] Shevchenko Yu. I., “Tenzor krivizny-krucheniya svyaznosti Kartana”, Differ. geom. mnogoobr. figur, 2019, no. 50, 155–168 | Zbl

[13] Shevchenko Yu. I., Skrydlova E. V., “Interpretatsiya svyaznosti Kartana s pomoschyu dvukh'yarusnoi glavnoi svyaznosti”, Mat. Mezhdunar. nauch. konf. «Sovremennaya geometriya i ee prilozheniya» (Kazan, 4-7 sentyabrya 2019 g.), Kazan, 2019, 166–169

[14] Shevchenko Yu. I., Skrydlova E. V., “O krivizne-kruchenii prostranstva so svyaznostyu Kartana”, Mat. Mezhdunar. nauch. konf. «Sovremennye problemy geometrii i topologii i ikh prilozheniya» (Tashkent, 21-23 noyabrya 2019 g.), Tashkent, 2019, 178–179