Geometry of a cubic form
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Tome 203 (2021), pp. 11-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we construct a geometric scheme based on a group approach. According to this approach, in addition to a set of figures, a certain group of transformations (“motions”) is introduced; this group determines the content of the geometry. Namely, within the framework of the corresponding geometric scheme, properties of figures that are invariant under the actions of the group are examined. To specify the transformation group, as a rule, a set of transformation that preserves some “fundamental object” is chosen. For example, the group of motions (i.e., transformations that preserve the distance between points) is used for constructing Euclidean geometry, the group of affine transformations (i.e., transformations that preserve the simple relation of three points) is used for affine geometry, the group of projective transformations (i.e., transformations that preserve the double (or complex) ratio of four points) is used for projective geometry, and so on. In this paper, a certain cubic form serves as the “fundamental object” of the “motion group.”
Mots-clés : invariant
Keywords: fundamental form, quadratic form, cubic form, linear space, cyclic length, cyclic angle.
@article{INTO_2021_203_a1,
     author = {N. I. Guseva},
     title = {Geometry of a cubic form},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {11--16},
     publisher = {mathdoc},
     volume = {203},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_203_a1/}
}
TY  - JOUR
AU  - N. I. Guseva
TI  - Geometry of a cubic form
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 11
EP  - 16
VL  - 203
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_203_a1/
LA  - ru
ID  - INTO_2021_203_a1
ER  - 
%0 Journal Article
%A N. I. Guseva
%T Geometry of a cubic form
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 11-16
%V 203
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_203_a1/
%G ru
%F INTO_2021_203_a1
N. I. Guseva. Geometry of a cubic form. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Tome 203 (2021), pp. 11-16. http://geodesic.mathdoc.fr/item/INTO_2021_203_a1/

[1] Burlakov I. M., Burlakov M. P., Geometricheskie struktury lineinykh algebr, Lambert Academic Publishing, 2017

[2] Burlakov M. P., Gamiltonovy algebry. Elementarnyi ocherk, Graf Press, M., 2006

[3] Burlakov M. P., Burlakov I. M., Guseva N. I., Ocherki ob algebrakh tsiklicheskikh chisel, Kim, M., 2020

[4] Garasko G. I., Nachala finslerovoi geometrii dlya fizikov, TETRU, M., 2009

[5] Norden A. P., Prostranstva affinnoi svyaznosti, Nauka, M., 1976 | MR

[6] Proskuryakov I. V., Sbornik zadach po lineinoi algebre, Nauka, M., 1967

[7] Sokolov N. P., Prostranstvennye matritsy i ikh prilozheniya, Fizmatgiz, M., 1960