On the stability of solutions of dynamical systems with dissipation
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and Mechanics, Tome 202 (2021), pp. 114-125
Voir la notice de l'article provenant de la source Math-Net.Ru
Many authors analyzed plane-parallel and spatial motions of realistic rigid bodies in various media. Numerous nonlinear models of the interaction of media and rigid bodies were constructed. For plane-parallel and spatial models, sufficient conditions for the stability of the rectilinear translational motion were found. We prove that under some conditions, such systems may also possess self-oscillating regimes, both stable or unstable. We discuss a natural generalization of force fields in various dissipative dynamical systems with one and two degrees of freedom.
Keywords:
dynamic system, dissipation, stability in the Lyapunov sense.
@article{INTO_2021_202_a5,
author = {M. V. Shamolin},
title = {On the stability of solutions of dynamical systems with dissipation},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {114--125},
publisher = {mathdoc},
volume = {202},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2021_202_a5/}
}
TY - JOUR AU - M. V. Shamolin TI - On the stability of solutions of dynamical systems with dissipation JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 114 EP - 125 VL - 202 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_202_a5/ LA - ru ID - INTO_2021_202_a5 ER -
%0 Journal Article %A M. V. Shamolin %T On the stability of solutions of dynamical systems with dissipation %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 114-125 %V 202 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_202_a5/ %G ru %F INTO_2021_202_a5
M. V. Shamolin. On the stability of solutions of dynamical systems with dissipation. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and Mechanics, Tome 202 (2021), pp. 114-125. http://geodesic.mathdoc.fr/item/INTO_2021_202_a5/