Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2021_202_a5, author = {M. V. Shamolin}, title = {On the stability of solutions of dynamical systems with dissipation}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {114--125}, publisher = {mathdoc}, volume = {202}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2021_202_a5/} }
TY - JOUR AU - M. V. Shamolin TI - On the stability of solutions of dynamical systems with dissipation JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 114 EP - 125 VL - 202 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_202_a5/ LA - ru ID - INTO_2021_202_a5 ER -
%0 Journal Article %A M. V. Shamolin %T On the stability of solutions of dynamical systems with dissipation %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 114-125 %V 202 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_202_a5/ %G ru %F INTO_2021_202_a5
M. V. Shamolin. On the stability of solutions of dynamical systems with dissipation. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and Mechanics, Tome 202 (2021), pp. 114-125. http://geodesic.mathdoc.fr/item/INTO_2021_202_a5/
[1] Andreev A. V., Shamolin M. V., “Matematicheskoe modelirovanie vozdeistviya sredy na tverdoe telo i novoe dvukhparametricheskoe semeistvo fazovykh portretov”, Vestn. Samarsk. un-ta. Estestvennonauch. ser., 2014, no. 10 (121), 109–115 | Zbl
[2] Andreev A. V., Shamolin M. V., “Metody matematicheskogo modelirovaniya vozdeistviya sredy na telo konicheskoi formy”, Sovr. mat. prilozh., 98 (2015), 9–16
[3] Andreev A. V., Shamolin M. V., “Modelirovanie vozdeistviya sredy na telo konicheskoi formy i semeistva fazovykh portretov v prostranstve kvaziskorostei”, Prikl. mekh. tekhn. fiz., 56:4 (2015), 85–91 | Zbl
[4] Bivin Yu. K., “Izmenenie napravleniya dvizheniya tverdogo tela na granitse razdela sred”, Izv. AN SSSR. Mekh. tv. tela., 1981, no. 4, 105–109
[5] Bivin Yu. K., Viktorov V. V., Stepanov L. P., “Issledovanie dvizheniya tverdogo tela v glinistoi srede”, Izv. AN SSSR. Mekh. tv. tela., 1978, no. 2, 159–165
[6] Byushgens G. S., Studnev R. V., Dinamika prodolnogo i bokovogo dvizheniya, Mashinostroenie, M., 1969
[7] Byushgens G. S., Studnev R. V., Dinamika samoleta. Prostranstvennoe dvizhenie, Mashinostroenie, M., 1988
[8] Eroshin V. A., Samsonov V. A., Shamolin M. V., “Modelnaya zadacha o tormozhenii tela v soprotivlyayuscheisya srede pri struinom obtekanii”, Izv. RAN. Mekh. zhidk. gaza., 1995, no. 3, 23–27
[9] Kozlov V. V., “Integriruemost i neintegriruemost v gamiltonovoi mekhanike”, Usp. mat. nauk., 38:1 (1983), 3–67 | MR | Zbl
[10] Lokshin B. Ya., Samsonov V. A., Shamolin M. V., “Mayatnikovye sistemy s dinamicheskoi simmetriei”, Sovr. mat. prilozh., 100 (2016), 76–133
[11] Samsonov V. A., Shamolin M. V., “K zadache o dvizhenii tela v soprotivlyayuscheisya srede”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 1989, no. 3, 51–54 | Zbl
[12] Trofimov V. V., Shamolin M. V., “Geometricheskie i dinamicheskie invarianty integriruemykh gamiltonovykh i dissipativnykh sistem”, Fundam. prikl. mat., 16:4 (2010), 3–229
[13] Chaplygin S. A., “O dvizhenii tyazhelykh tel v neszhimaemoi zhidkosti”, Poln. sobr. soch. T. 1, Izd-vo AN SSSR, L., 1933, 133–135
[14] Shamolin M. V., “K zadache o dvizhenii tela v srede s soprotivleniem”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 1992, no. 1, 52–58 | MR | Zbl
[15] Shamolin M. V., “Klassifikatsiya fazovykh portretov v zadache o dvizhenii tela v soprotivlyayuscheisya srede pri nalichii lineinogo dempfiruyuschego momenta”, Prikl. mat. mekh., 57:4 (1993), 40–49 | MR | Zbl
[16] Shamolin M. V., “Vvedenie v zadachu o tormozhenii tela v soprotivlyayuscheisya srede i novoe dvukhparametricheskoe semeistvo fazovykh portretov”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 1996, no. 4, 57–69 | MR | Zbl
[17] Shamolin M. V., “Novye integriruemye po Yakobi sluchai v dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi”, Dokl. RAN., 364:5, 627–629 | MR | Zbl
[18] Shamolin M. V., “Polnaya integriruemost uravnenii dvizheniya prostranstvennogo mayatnika v potoke nabegayuschei sredy”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 2001, no. 5, 22–28 | Zbl
[19] Shamolin M. V., “Sluchai integriruemosti uravnenii prostranstvennoi dinamiki tverdogo tela”, Prikl. mekh., 37:6 (2001), 74–82 | MR | Zbl
[20] Shamolin M. V., “Sluchai polnoi integriruemosti v prostranstvennoi dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi, pri uchete vraschatelnykh proizvodnykh momenta sil po uglovoi skorosti”, Dokl. RAN., 403:4 (2005), 482–485
[21] Shamolin M. V., “Sopostavlenie integriruemykh po Yakobi sluchaev ploskogo i prostranstvennogo dvizheniya tela v srede pri struinom obtekanii”, Prikl. mat. mekh., 69:6 (2005), 1003–1010 | MR | Zbl
[22] Shamolin M. V., “Nekotorye modelnye zadachi dinamiki tverdogo tela pri vzaimodeistvii ego so sredoi”, Prikl. mekh., 43:10 (2007), 49–67 | Zbl
[23] Shamolin M. V., “Sluchai polnoi integriruemosti v dinamike na kasatelnom rassloenii dvumernoi sfery”, Usp. mat. nauk., 62:5 (2007), 169–170 | MR | Zbl
[24] Shamolin M. V., “Dinamicheskie sistemy s peremennoi dissipatsiei: podkhody, metody, prilozheniya”, Fundam. prikl. mat., 14:3 (2008), 3–237
[25] Shamolin M. V., “Novye integriruemye sluchai v dinamike tela, vzaimodeistvuyuschego so sredoi, pri uchete zavisimosti momenta sily soprotivleniya ot uglovoi skorosti”, Prikl. mat. mekh., 72:2 (2008), 273–287 | MR | Zbl
[26] Shamolin M. V., “Ob ustoichivosti pryamolineinogo postupatelnogo dvizheniya”, Prikl. mekh., 45:6 (2009), 125–140 | Zbl
[27] Shamolin M. V., “Novye sluchai integriruemosti v prostranstvennoi dinamike tverdogo tela”, Dokl. RAN., 431:3 (2010), 339–343 | MR | Zbl
[28] Shamolin M. V., “Prostranstvennoe dvizhenie tverdogo tela v srede s soprotivleniem”, Prikl. mekh., 46:7 (2010), 120–133
[29] Shamolin M. V., “Dvizhenie tverdogo tela v soprotivlyayuscheisya srede”, Mat. model., 23:12 (2011), 79–104 | MR | Zbl
[30] Shamolin M. V., “Zadacha o dvizhenii tela v soprotivlyayuscheisya srede s uchetom zavisimosti momenta sily soprotivleniya ot uglovoi skorosti”, Mat. model., 24:10 (2012), 109–132 | MR
[31] Shamolin M. V., “Novyi sluchai integriruemosti v prostranstvennoi dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi, pri uchete lineinogo dempfirovaniya”, Dokl. RAN., 442:4 (2012), 479–481 | MR
[32] Shamolin M. V., “Novyi sluchai integriruemosti uravnenii dinamiki na kasatelnom rassloenii k trekhmernoi sfere”, Usp. mat. nauk., 68:5 (413) (2013), 185–186 | MR | Zbl
[33] Shamolin M. V., “Ob integriruemosti v zadachakh dinamiki tverdogo tela, vzaimodeistvuyuschego so sredoi”, Prikl. mekh., 49:6 (2013), 44–54 | Zbl
[34] Shamolin M. V., “Integriruemye sistemy s peremennoi dissipatsiei na kasatelnom rassloenii k mnogomernoi sfere i prilozheniya”, Fundam. prikl. mat., 20:4 (2015), 3–231
[35] Shamolin M. V., “Polnyi spisok pervykh integralov dinamicheskikh uravnenii dvizheniya mnogomernogo tverdogo tela v nekonservativnom pole”, Dokl. RAN., 461:5 (2015), 533–536 | MR
[36] Shamolin M. V., “Novye sluchai integriruemykh sistem s dissipatsiei na kasatelnom rassloenii dvumernogo mnogoobraziya”, Dokl. RAN., 475:5 (2017), 519–523 | MR
[37] Shamolin M. V., “Novye sluchai integriruemykh sistem s dissipatsiei na kasatelnom rassloenii trekhmernogo mnogoobraziya”, Dokl. RAN., 477:2 (2017), 168–172 | MR
[38] Shamolin M. V., “Integriruemye dinamicheskie sistemy s konechnym chislom stepenei svobody s dissipatsiei”, Probl. mat. anal., 2018, no. 95, 79–101 | MR | Zbl
[39] Shamolin M. V., Integriruemye dinamicheskie sistemy s dissipatsiei. Kn. 1. Tverdoe telo v nekonservativnom pole, LENAND, M., 2019
[40] Shamolin M. V., “Nekotorye integriruemye dinamicheskie sistemy tretego i pyatogo poryadka s dissipatsiei”, Probl. mat. anal., 2019, no. 97, 155–165 | Zbl