On the stability of solutions of dynamical systems with dissipation
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and Mechanics, Tome 202 (2021), pp. 114-125.

Voir la notice de l'article provenant de la source Math-Net.Ru

Many authors analyzed plane-parallel and spatial motions of realistic rigid bodies in various media. Numerous nonlinear models of the interaction of media and rigid bodies were constructed. For plane-parallel and spatial models, sufficient conditions for the stability of the rectilinear translational motion were found. We prove that under some conditions, such systems may also possess self-oscillating regimes, both stable or unstable. We discuss a natural generalization of force fields in various dissipative dynamical systems with one and two degrees of freedom.
Keywords: dynamic system, dissipation, stability in the Lyapunov sense.
@article{INTO_2021_202_a5,
     author = {M. V. Shamolin},
     title = {On the stability of solutions of dynamical systems with dissipation},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {114--125},
     publisher = {mathdoc},
     volume = {202},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_202_a5/}
}
TY  - JOUR
AU  - M. V. Shamolin
TI  - On the stability of solutions of dynamical systems with dissipation
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 114
EP  - 125
VL  - 202
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_202_a5/
LA  - ru
ID  - INTO_2021_202_a5
ER  - 
%0 Journal Article
%A M. V. Shamolin
%T On the stability of solutions of dynamical systems with dissipation
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 114-125
%V 202
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_202_a5/
%G ru
%F INTO_2021_202_a5
M. V. Shamolin. On the stability of solutions of dynamical systems with dissipation. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and Mechanics, Tome 202 (2021), pp. 114-125. http://geodesic.mathdoc.fr/item/INTO_2021_202_a5/

[1] Andreev A. V., Shamolin M. V., “Matematicheskoe modelirovanie vozdeistviya sredy na tverdoe telo i novoe dvukhparametricheskoe semeistvo fazovykh portretov”, Vestn. Samarsk. un-ta. Estestvennonauch. ser., 2014, no. 10 (121), 109–115 | Zbl

[2] Andreev A. V., Shamolin M. V., “Metody matematicheskogo modelirovaniya vozdeistviya sredy na telo konicheskoi formy”, Sovr. mat. prilozh., 98 (2015), 9–16

[3] Andreev A. V., Shamolin M. V., “Modelirovanie vozdeistviya sredy na telo konicheskoi formy i semeistva fazovykh portretov v prostranstve kvaziskorostei”, Prikl. mekh. tekhn. fiz., 56:4 (2015), 85–91 | Zbl

[4] Bivin Yu. K., “Izmenenie napravleniya dvizheniya tverdogo tela na granitse razdela sred”, Izv. AN SSSR. Mekh. tv. tela., 1981, no. 4, 105–109

[5] Bivin Yu. K., Viktorov V. V., Stepanov L. P., “Issledovanie dvizheniya tverdogo tela v glinistoi srede”, Izv. AN SSSR. Mekh. tv. tela., 1978, no. 2, 159–165

[6] Byushgens G. S., Studnev R. V., Dinamika prodolnogo i bokovogo dvizheniya, Mashinostroenie, M., 1969

[7] Byushgens G. S., Studnev R. V., Dinamika samoleta. Prostranstvennoe dvizhenie, Mashinostroenie, M., 1988

[8] Eroshin V. A., Samsonov V. A., Shamolin M. V., “Modelnaya zadacha o tormozhenii tela v soprotivlyayuscheisya srede pri struinom obtekanii”, Izv. RAN. Mekh. zhidk. gaza., 1995, no. 3, 23–27

[9] Kozlov V. V., “Integriruemost i neintegriruemost v gamiltonovoi mekhanike”, Usp. mat. nauk., 38:1 (1983), 3–67 | MR | Zbl

[10] Lokshin B. Ya., Samsonov V. A., Shamolin M. V., “Mayatnikovye sistemy s dinamicheskoi simmetriei”, Sovr. mat. prilozh., 100 (2016), 76–133

[11] Samsonov V. A., Shamolin M. V., “K zadache o dvizhenii tela v soprotivlyayuscheisya srede”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 1989, no. 3, 51–54 | Zbl

[12] Trofimov V. V., Shamolin M. V., “Geometricheskie i dinamicheskie invarianty integriruemykh gamiltonovykh i dissipativnykh sistem”, Fundam. prikl. mat., 16:4 (2010), 3–229

[13] Chaplygin S. A., “O dvizhenii tyazhelykh tel v neszhimaemoi zhidkosti”, Poln. sobr. soch. T. 1, Izd-vo AN SSSR, L., 1933, 133–135

[14] Shamolin M. V., “K zadache o dvizhenii tela v srede s soprotivleniem”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 1992, no. 1, 52–58 | MR | Zbl

[15] Shamolin M. V., “Klassifikatsiya fazovykh portretov v zadache o dvizhenii tela v soprotivlyayuscheisya srede pri nalichii lineinogo dempfiruyuschego momenta”, Prikl. mat. mekh., 57:4 (1993), 40–49 | MR | Zbl

[16] Shamolin M. V., “Vvedenie v zadachu o tormozhenii tela v soprotivlyayuscheisya srede i novoe dvukhparametricheskoe semeistvo fazovykh portretov”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 1996, no. 4, 57–69 | MR | Zbl

[17] Shamolin M. V., “Novye integriruemye po Yakobi sluchai v dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi”, Dokl. RAN., 364:5, 627–629 | MR | Zbl

[18] Shamolin M. V., “Polnaya integriruemost uravnenii dvizheniya prostranstvennogo mayatnika v potoke nabegayuschei sredy”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 2001, no. 5, 22–28 | Zbl

[19] Shamolin M. V., “Sluchai integriruemosti uravnenii prostranstvennoi dinamiki tverdogo tela”, Prikl. mekh., 37:6 (2001), 74–82 | MR | Zbl

[20] Shamolin M. V., “Sluchai polnoi integriruemosti v prostranstvennoi dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi, pri uchete vraschatelnykh proizvodnykh momenta sil po uglovoi skorosti”, Dokl. RAN., 403:4 (2005), 482–485

[21] Shamolin M. V., “Sopostavlenie integriruemykh po Yakobi sluchaev ploskogo i prostranstvennogo dvizheniya tela v srede pri struinom obtekanii”, Prikl. mat. mekh., 69:6 (2005), 1003–1010 | MR | Zbl

[22] Shamolin M. V., “Nekotorye modelnye zadachi dinamiki tverdogo tela pri vzaimodeistvii ego so sredoi”, Prikl. mekh., 43:10 (2007), 49–67 | Zbl

[23] Shamolin M. V., “Sluchai polnoi integriruemosti v dinamike na kasatelnom rassloenii dvumernoi sfery”, Usp. mat. nauk., 62:5 (2007), 169–170 | MR | Zbl

[24] Shamolin M. V., “Dinamicheskie sistemy s peremennoi dissipatsiei: podkhody, metody, prilozheniya”, Fundam. prikl. mat., 14:3 (2008), 3–237

[25] Shamolin M. V., “Novye integriruemye sluchai v dinamike tela, vzaimodeistvuyuschego so sredoi, pri uchete zavisimosti momenta sily soprotivleniya ot uglovoi skorosti”, Prikl. mat. mekh., 72:2 (2008), 273–287 | MR | Zbl

[26] Shamolin M. V., “Ob ustoichivosti pryamolineinogo postupatelnogo dvizheniya”, Prikl. mekh., 45:6 (2009), 125–140 | Zbl

[27] Shamolin M. V., “Novye sluchai integriruemosti v prostranstvennoi dinamike tverdogo tela”, Dokl. RAN., 431:3 (2010), 339–343 | MR | Zbl

[28] Shamolin M. V., “Prostranstvennoe dvizhenie tverdogo tela v srede s soprotivleniem”, Prikl. mekh., 46:7 (2010), 120–133

[29] Shamolin M. V., “Dvizhenie tverdogo tela v soprotivlyayuscheisya srede”, Mat. model., 23:12 (2011), 79–104 | MR | Zbl

[30] Shamolin M. V., “Zadacha o dvizhenii tela v soprotivlyayuscheisya srede s uchetom zavisimosti momenta sily soprotivleniya ot uglovoi skorosti”, Mat. model., 24:10 (2012), 109–132 | MR

[31] Shamolin M. V., “Novyi sluchai integriruemosti v prostranstvennoi dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi, pri uchete lineinogo dempfirovaniya”, Dokl. RAN., 442:4 (2012), 479–481 | MR

[32] Shamolin M. V., “Novyi sluchai integriruemosti uravnenii dinamiki na kasatelnom rassloenii k trekhmernoi sfere”, Usp. mat. nauk., 68:5 (413) (2013), 185–186 | MR | Zbl

[33] Shamolin M. V., “Ob integriruemosti v zadachakh dinamiki tverdogo tela, vzaimodeistvuyuschego so sredoi”, Prikl. mekh., 49:6 (2013), 44–54 | Zbl

[34] Shamolin M. V., “Integriruemye sistemy s peremennoi dissipatsiei na kasatelnom rassloenii k mnogomernoi sfere i prilozheniya”, Fundam. prikl. mat., 20:4 (2015), 3–231

[35] Shamolin M. V., “Polnyi spisok pervykh integralov dinamicheskikh uravnenii dvizheniya mnogomernogo tverdogo tela v nekonservativnom pole”, Dokl. RAN., 461:5 (2015), 533–536 | MR

[36] Shamolin M. V., “Novye sluchai integriruemykh sistem s dissipatsiei na kasatelnom rassloenii dvumernogo mnogoobraziya”, Dokl. RAN., 475:5 (2017), 519–523 | MR

[37] Shamolin M. V., “Novye sluchai integriruemykh sistem s dissipatsiei na kasatelnom rassloenii trekhmernogo mnogoobraziya”, Dokl. RAN., 477:2 (2017), 168–172 | MR

[38] Shamolin M. V., “Integriruemye dinamicheskie sistemy s konechnym chislom stepenei svobody s dissipatsiei”, Probl. mat. anal., 2018, no. 95, 79–101 | MR | Zbl

[39] Shamolin M. V., Integriruemye dinamicheskie sistemy s dissipatsiei. Kn. 1. Tverdoe telo v nekonservativnom pole, LENAND, M., 2019

[40] Shamolin M. V., “Nekotorye integriruemye dinamicheskie sistemy tretego i pyatogo poryadka s dissipatsiei”, Probl. mat. anal., 2019, no. 97, 155–165 | Zbl