Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2021_201_a3, author = {G. A. Dyikanov and K. Kh. Shabadikov and T. K. Yuldashev (Iuldashev)}, title = {On the inverse initial-value problem for a quasilinear differential equation with a high-degree multidimensional {Whitham} operator}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {44--52}, publisher = {mathdoc}, volume = {201}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2021_201_a3/} }
TY - JOUR AU - G. A. Dyikanov AU - K. Kh. Shabadikov AU - T. K. Yuldashev (Iuldashev) TI - On the inverse initial-value problem for a quasilinear differential equation with a high-degree multidimensional Whitham operator JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 44 EP - 52 VL - 201 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_201_a3/ LA - ru ID - INTO_2021_201_a3 ER -
%0 Journal Article %A G. A. Dyikanov %A K. Kh. Shabadikov %A T. K. Yuldashev (Iuldashev) %T On the inverse initial-value problem for a quasilinear differential equation with a high-degree multidimensional Whitham operator %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 44-52 %V 201 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_201_a3/ %G ru %F INTO_2021_201_a3
G. A. Dyikanov; K. Kh. Shabadikov; T. K. Yuldashev (Iuldashev). On the inverse initial-value problem for a quasilinear differential equation with a high-degree multidimensional Whitham operator. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential equations, geometry, and topology, Tome 201 (2021), pp. 44-52. http://geodesic.mathdoc.fr/item/INTO_2021_201_a3/
[1] \label{tt1} Algazin S. D., Kiiko I. A., Flatter plastin i obolochek, Nauka, M., 2006
[2] \label{tt2} Aliev F. A., Ismailov N. A., Namazov A. A., Magarramov I. A., “Asimptoticheskii metod opredeleniya koeffitsienta gidravlicheskogo soprotivleniya na raznykh uchastkakh truboprovoda pri dobyche nefti”, Proc. Inst. Appl. Math., 6:1 (2017), 3–15
[3] \label{tt3} Gamzaev Kh. M., “Chislennyi metod resheniya koeffitsientnoi obratnoi zadachi dlya uravneniya diffuzii–konvektsii–reaktsii”, Vestn. Tomsk. un-ta. Mat. mekh., 50 (2017), 67–78 | MR
[4] \label{tt4} Goritskii A. Yu., Kruzhkov S. N., Chechkin G. A., Uravneniya s chastnymi proizvodnymi pervogo poryadka, MGU, M., 1999
[5] \label{tt5} Zamyshlyaeva A. A., “Matematicheskie modeli sobolevskogo tipa vysokogo poryadka”, Vestn. Yuzhno-Ural. un-ta. Ser. Mat. model. program., 7:2 (2014), 5–28 | Zbl
[6] \label{tt6} Imanaliev M. I., Ved Yu. A., “O differentsialnom uravnenii v chastnykh proizvodnykh pervogo poryadka s integralnym koeffitsientom”, Differ. uravn., 23:3 (1989), 465–477
[7] \label{tt7} Imanaliev M. I., Alekseenko S. N., “K teorii sistem nelineinykh integro-differentsialnykh uravnenii v chastnykh proizvodnykh tipa Uizema”, Dokl. RAN., 325:6 (1992), 111–115
[8] \label{tt8} Karimov Sh. T., “Ob odnom metode resheniya zadachi Koshi dlya odnomernogo polivolnovogo uravneniya s singulyarnym operatorom Besselya”, Izv. vuzov. Mat., 8 (2017), 27–41 | Zbl
[9] \label{tt9} Koshanov B. D., Soldatov A. P., “Kraevaya zadacha s normalnymi proizvodnymi dlya ellipticheskogo uravneniya vysokogo poryadka na ploskosti”, Differ. uravn., 52:12 (2016), 1666–1681 | MR | Zbl
[10] \label{tt10} Pokhozhaev S. I., “O razreshimosti kvazilineinykh ellipticheskikh uravnenii proizvolnogo poryadka”, Mat. sb., 117:2 (1982), 251–265 | MR | Zbl
[11] \label{tt11} Romanov V. G., “Ob opredelenii koeffitsientov v uravneniyakh vyazkouprugosti”, Sib. mat. zh., 55:3 (2014), 617–626 | MR | Zbl
[12] \label{tt12} Skrypnik I. V., Nelineinye ellipticheskie uravneniya vysshego poryadka, Naukova dumka, Kiev, 1973
[13] \label{tt13} Yuldashev T. K., “Smeshannaya zadacha dlya nelineinogo integro-differentsialnogo uravneniya s parabolicheskim operatorom vysokoi stepeni”, Zh. vychisl. mat. mat. fiz., 52:1 (2012), 112–123 | MR | Zbl
[14] \label{tt14} Yuldashev T. K., “Obobschennaya razreshimost smeshannoi zadachi dlya nelineinogo integro-differentsialnogo uravneniya vysokogo poryadka s vyrozhdennym yadrom”, Izv. in-ta mat. inform. Udmurt. un-ta., 50 (2017), 121–132 | Zbl
[15] \label{tt15} Yuldashev T. K., “Razreshimost i opredelenie koeffitsienta v odnoi kraevoi zadache dlya integro-differentsialnogo uravneniya Fredgolma s vyrozhdennym yadrom”, Dokl. NAN Ukrainy., 5 (2017), 8–16 | MR | Zbl
[16] \label{tt16} Yuldashev T. K., “Integro-differentsialnoe uravnenie s dvumernym operatorom Uizema vysokoi stepeni”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obzory., 156 (2018), 117–125
[17] \label{tt17} Yuldasheva A. V., “Ob odnoi zadache dlya kvazilineinogo uravneniya chetnogo poryadka”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obzory., 140 (2017), 43–49 | MR
[18] \label{tt18} Benney D. J., Luke J. C., “Interactions of permanent waves of finite amplitude”, J. Math. Phys., 43 (1964), 309–313 | DOI | MR | Zbl
[19] \label{tt19} Yuldashev T. K., “Determination of the coefficient and boundary regime in boundary value problem for integro-differential equation with degenerate kernel”, Lobachevskii J. Math., 38:3 (2017), 547–553 | DOI | MR | Zbl
[20] \label{tt20} Yuldashev T. K., “On inverse boundary value problem for a Fredholm integro-differential equation with degenerate kernel and spectral parameter”, Lobachevskii J. Math., 40:2 (2019), 230–239 | DOI | MR | Zbl