On the inverse initial-value problem for a quasilinear differential equation with a high-degree multidimensional Whitham operator
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential equations, geometry, and topology, Tome 201 (2021), pp. 44-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we examine the solvability of the inverse initial-value problem for a quasilinear partial differential equation with a high-degree multidimensional Whitham operator. The expression of high-order partial differential equations as the superposition of first-order partial differential operators allowed us to represent the higher-order equation as an ordinary differential equation for an unknown function along characteristics. The unique solvability of the direct initial-value problem is proved by the method of successive approximations. An estimate for the convergence of the Picard iterative process is obtained. The problem of the search for the unknown coefficient is reduced to a Volterra integral equation of the first kind.
Keywords: inverse problem, multidimensional Whitham operator, method of successive approximations, Volterra integral equation of the first kind, unique solvability.
@article{INTO_2021_201_a3,
     author = {G. A. Dyikanov and K. Kh. Shabadikov and T. K. Yuldashev (Iuldashev)},
     title = {On the inverse initial-value problem for a quasilinear differential equation with a high-degree multidimensional {Whitham} operator},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {44--52},
     publisher = {mathdoc},
     volume = {201},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_201_a3/}
}
TY  - JOUR
AU  - G. A. Dyikanov
AU  - K. Kh. Shabadikov
AU  - T. K. Yuldashev (Iuldashev)
TI  - On the inverse initial-value problem for a quasilinear differential equation with a high-degree multidimensional Whitham operator
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 44
EP  - 52
VL  - 201
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_201_a3/
LA  - ru
ID  - INTO_2021_201_a3
ER  - 
%0 Journal Article
%A G. A. Dyikanov
%A K. Kh. Shabadikov
%A T. K. Yuldashev (Iuldashev)
%T On the inverse initial-value problem for a quasilinear differential equation with a high-degree multidimensional Whitham operator
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 44-52
%V 201
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_201_a3/
%G ru
%F INTO_2021_201_a3
G. A. Dyikanov; K. Kh. Shabadikov; T. K. Yuldashev (Iuldashev). On the inverse initial-value problem for a quasilinear differential equation with a high-degree multidimensional Whitham operator. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential equations, geometry, and topology, Tome 201 (2021), pp. 44-52. http://geodesic.mathdoc.fr/item/INTO_2021_201_a3/

[1] \label{tt1} Algazin S. D., Kiiko I. A., Flatter plastin i obolochek, Nauka, M., 2006

[2] \label{tt2} Aliev F. A., Ismailov N. A., Namazov A. A., Magarramov I. A., “Asimptoticheskii metod opredeleniya koeffitsienta gidravlicheskogo soprotivleniya na raznykh uchastkakh truboprovoda pri dobyche nefti”, Proc. Inst. Appl. Math., 6:1 (2017), 3–15

[3] \label{tt3} Gamzaev Kh. M., “Chislennyi metod resheniya koeffitsientnoi obratnoi zadachi dlya uravneniya diffuzii–konvektsii–reaktsii”, Vestn. Tomsk. un-ta. Mat. mekh., 50 (2017), 67–78 | MR

[4] \label{tt4} Goritskii A. Yu., Kruzhkov S. N., Chechkin G. A., Uravneniya s chastnymi proizvodnymi pervogo poryadka, MGU, M., 1999

[5] \label{tt5} Zamyshlyaeva A. A., “Matematicheskie modeli sobolevskogo tipa vysokogo poryadka”, Vestn. Yuzhno-Ural. un-ta. Ser. Mat. model. program., 7:2 (2014), 5–28 | Zbl

[6] \label{tt6} Imanaliev M. I., Ved Yu. A., “O differentsialnom uravnenii v chastnykh proizvodnykh pervogo poryadka s integralnym koeffitsientom”, Differ. uravn., 23:3 (1989), 465–477

[7] \label{tt7} Imanaliev M. I., Alekseenko S. N., “K teorii sistem nelineinykh integro-differentsialnykh uravnenii v chastnykh proizvodnykh tipa Uizema”, Dokl. RAN., 325:6 (1992), 111–115

[8] \label{tt8} Karimov Sh. T., “Ob odnom metode resheniya zadachi Koshi dlya odnomernogo polivolnovogo uravneniya s singulyarnym operatorom Besselya”, Izv. vuzov. Mat., 8 (2017), 27–41 | Zbl

[9] \label{tt9} Koshanov B. D., Soldatov A. P., “Kraevaya zadacha s normalnymi proizvodnymi dlya ellipticheskogo uravneniya vysokogo poryadka na ploskosti”, Differ. uravn., 52:12 (2016), 1666–1681 | MR | Zbl

[10] \label{tt10} Pokhozhaev S. I., “O razreshimosti kvazilineinykh ellipticheskikh uravnenii proizvolnogo poryadka”, Mat. sb., 117:2 (1982), 251–265 | MR | Zbl

[11] \label{tt11} Romanov V. G., “Ob opredelenii koeffitsientov v uravneniyakh vyazkouprugosti”, Sib. mat. zh., 55:3 (2014), 617–626 | MR | Zbl

[12] \label{tt12} Skrypnik I. V., Nelineinye ellipticheskie uravneniya vysshego poryadka, Naukova dumka, Kiev, 1973

[13] \label{tt13} Yuldashev T. K., “Smeshannaya zadacha dlya nelineinogo integro-differentsialnogo uravneniya s parabolicheskim operatorom vysokoi stepeni”, Zh. vychisl. mat. mat. fiz., 52:1 (2012), 112–123 | MR | Zbl

[14] \label{tt14} Yuldashev T. K., “Obobschennaya razreshimost smeshannoi zadachi dlya nelineinogo integro-differentsialnogo uravneniya vysokogo poryadka s vyrozhdennym yadrom”, Izv. in-ta mat. inform. Udmurt. un-ta., 50 (2017), 121–132 | Zbl

[15] \label{tt15} Yuldashev T. K., “Razreshimost i opredelenie koeffitsienta v odnoi kraevoi zadache dlya integro-differentsialnogo uravneniya Fredgolma s vyrozhdennym yadrom”, Dokl. NAN Ukrainy., 5 (2017), 8–16 | MR | Zbl

[16] \label{tt16} Yuldashev T. K., “Integro-differentsialnoe uravnenie s dvumernym operatorom Uizema vysokoi stepeni”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obzory., 156 (2018), 117–125

[17] \label{tt17} Yuldasheva A. V., “Ob odnoi zadache dlya kvazilineinogo uravneniya chetnogo poryadka”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obzory., 140 (2017), 43–49 | MR

[18] \label{tt18} Benney D. J., Luke J. C., “Interactions of permanent waves of finite amplitude”, J. Math. Phys., 43 (1964), 309–313 | DOI | MR | Zbl

[19] \label{tt19} Yuldashev T. K., “Determination of the coefficient and boundary regime in boundary value problem for integro-differential equation with degenerate kernel”, Lobachevskii J. Math., 38:3 (2017), 547–553 | DOI | MR | Zbl

[20] \label{tt20} Yuldashev T. K., “On inverse boundary value problem for a Fredholm integro-differential equation with degenerate kernel and spectral parameter”, Lobachevskii J. Math., 40:2 (2019), 230–239 | DOI | MR | Zbl