Mixed problem for an integro-differential equation with a multidimensional pseudoparabolic operator and nonlinear deviation
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential equations, geometry, and topology, Tome 201 (2021), pp. 33-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we examine the unique generalized solvability and construct a solution to a nonlinear multidimensional mixed problem for a fourth-order nonlinear pseudoparabolic integro-differential equation with a degenerate kernel and nonlinear deviation. We establish sufficient coefficient conditions for the unique solvability of the nonlocal problem for regular values of the spectral parameter. The research is based on the Fourier method of separation of variables, the method of successive approximations, and the method of contraction mappings.
Keywords: multidimensional mixed problem, integro-differential equation, degenerate kernel, nonlinear deviation, generalized solvability.
@article{INTO_2021_201_a2,
     author = {T. K. Yuldashev (Iuldashev) and F. D. Rakhmonov},
     title = {Mixed problem for an integro-differential equation with a multidimensional pseudoparabolic operator and nonlinear deviation},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {33--43},
     publisher = {mathdoc},
     volume = {201},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_201_a2/}
}
TY  - JOUR
AU  - T. K. Yuldashev (Iuldashev)
AU  - F. D. Rakhmonov
TI  - Mixed problem for an integro-differential equation with a multidimensional pseudoparabolic operator and nonlinear deviation
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 33
EP  - 43
VL  - 201
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_201_a2/
LA  - ru
ID  - INTO_2021_201_a2
ER  - 
%0 Journal Article
%A T. K. Yuldashev (Iuldashev)
%A F. D. Rakhmonov
%T Mixed problem for an integro-differential equation with a multidimensional pseudoparabolic operator and nonlinear deviation
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 33-43
%V 201
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_201_a2/
%G ru
%F INTO_2021_201_a2
T. K. Yuldashev (Iuldashev); F. D. Rakhmonov. Mixed problem for an integro-differential equation with a multidimensional pseudoparabolic operator and nonlinear deviation. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential equations, geometry, and topology, Tome 201 (2021), pp. 33-43. http://geodesic.mathdoc.fr/item/INTO_2021_201_a2/

[1] \label{turAA} Aleksandrov V. M., Kovalenko E. V., Zadachi mekhaniki sploshnykh sred so smeshannymi granichnymi usloviyami, Nauka, M., 1986

[2] \label{tur1} Vagabov A. I., “Obobschennyi metod Fure resheniya smeshannykh zadach dlya nelineinykh uravnenii”, Differ. uravn., 32:1 (1996), 90–100 | MR | Zbl

[3] \label{tur2} Dyikanov G. A., “Smeshannaya zadacha dlya odnogo nelineinogo differentsialnogo uravneniya v chastnykh proizvodnykh chetvertogo poryadka”, Vestn. OshGU., 2 (2017), 41–48

[4] \label{tur3} Zaripov S. K., “Postroenie analoga teoremy Fredgolma dlya odnogo klassa modelnykh integro-differentsialnykh uravnenii pervogo poryadka s singulyarnoi tochkoi v yadre”, Vestn. Tomsk. un-ta. Mat. Mekh., 46 (2017), 24–36

[5] \label{tur4} Zaripov S. K., “Postroenie analoga teoremy Fredgolma dlya odnogo klassa modelnykh integro-differentsialnykh uravnenii pervogo poryadka s logarifmicheskoi osobennostyu v yadre”, Vestn. Samar. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki., 21:2 (2017), 236–248 | Zbl

[6] \label{tur5} Ilin V. A., “O razreshimosti smeshannykh zadach dlya giperbolicheskogo i parabolicheskogo uravnenii”, Usp. mat. nauk., 15:2 (1960), 97–154 | MR

[7] \label{tur6} Ilin V. A., Moiseev E. I., “Optimizatsiya za proizvolnyi dostatochno bolshoi promezhutok vremeni granichnogo upravleniya kolebaniyami struny uprugoi siloi”, Differ. uravn., 42:12 (2006), 1699–1711 | MR

[8] \label{tur7} Khromov A. P., “Neobkhodimye i dostatochnye usloviya suschestvovaniya klassicheskogo resheniya smeshannoi zadachi dlya odnorodnogo volnovogo uravneniya v sluchae summiruemogo potentsiala”, Differ. uravn., 55:5 (2019), 717–731 | MR | Zbl

[9] \label{tur8} Chandirov G. I., Smeshannaya zadacha dlya kvazilineinykh uravnenii giperbolicheskogo tipa, Diss. na soisk. uch. step. dokt. fiz.-mat. nauk, AzGU, Baku, 1970

[10] \label{tur9} Chernyatin V. A., Obosnovanie metoda Fure v smeshannoi zadache dlya uravnenii v chastnykh proizvodnykh, MGU, M., 1992

[11] \label{tur10} Shabadikov K. Kh., Issledovanie reshenii smeshannykh zadach dlya kvazilineinykh differentsialnykh uravnenii s malym parametrom pri starshei smeshannoi proizvodnoi, Diss. na soisk. uch. step. kand. fiz.-mat. nauk, FerGPI, Fergana, 1984

[12] \label{tur11} Yuldashev T. K., “Obobschennaya razreshimost smeshannoi zadachi dlya nelineinogo integro-differentsialnogo uravneniya vysokogo poryadka s vyrozhdennym yadrom”, Izv. in-ta mat. inform. Udmurt. un-ta., 50 (2017), 121–132 | Zbl

[13] \label{tur12} Yuldashev T. K., “Ob odnoi kraevoi zadache dlya integro-differentsialnogo uravneniya v chastnykh proizvodnykh chetvertogo poryadka s vyrozhdennym yadrom”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obzory., 145 (2018), 95–109 | MR

[14] \label{tur13} Yuldashev T. K., “Ob odnoi nelokalnoi obratnoi zadache dlya nelineinogo integro-differentsialnogo uravneniya Benney–Luke s vyrozhdennym yadrom”, Vestn. Tver. un-ta. Ser. Prikl. mat., 3 (2018), 19–41

[15] \label{tur14} Yuldashev T. K., “Obratnaya kraevaya zadacha dlya integro-differentsialnogo uravneniya tipa Bussineska s vyrozhdennym yadrom”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obzory., 149 (2018), 129–140

[16] \label{tur15} Yuldashev T. K., “Smeshannaya zadacha dlya nelineinogo differentsialnogo uravneniya chetvertogo poryadka s malym parametrom pri parabolicheskom operatore”, Zh. vychisl. mat. mat. fiz., 51:9 (2011), 1703–1711 | MR | Zbl

[17] \label{tur16} Yuldashev T. K., “Smeshannaya zadacha dlya nelineinogo integro-differentsialnogo uravneniya s parabolicheskim operatorom vysokoi stepeni”, Zh. vychisl. mat. mat. fiz., 52:1 (2012), 112–123 | MR | Zbl