The problem of recovering a surface by the given external curvature and solutions of the Monge--Amp\`ere equation
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential equations, geometry, and topology, Tome 201 (2021), pp. 123-131

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we generalize the concept of the spherical mapping of a surface in Euclidean space. The normal mapping of a surface introduced by I. Ya. Bakelman is a special case of the generalized curvature. We prove general properties of the generalized curvature and special properties of the generalized curvature extended to a hyperbolic cylinder. Using these properties, we prove the existence and uniqueness of a solution of the Monge–Ampère equation in a multiply connected domain.
Keywords: spherical mapping, external curvature, normal mapping, generalized conditional curvature, hyperbolic cylinder, multiply connected domain.
@article{INTO_2021_201_a10,
     author = {A. Artikbaev and N. M. Ibodullaeva},
     title = {The problem of recovering a surface by the given external curvature and solutions of the {Monge--Amp\`ere} equation},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {123--131},
     publisher = {mathdoc},
     volume = {201},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_201_a10/}
}
TY  - JOUR
AU  - A. Artikbaev
AU  - N. M. Ibodullaeva
TI  - The problem of recovering a surface by the given external curvature and solutions of the Monge--Amp\`ere equation
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 123
EP  - 131
VL  - 201
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_201_a10/
LA  - ru
ID  - INTO_2021_201_a10
ER  - 
%0 Journal Article
%A A. Artikbaev
%A N. M. Ibodullaeva
%T The problem of recovering a surface by the given external curvature and solutions of the Monge--Amp\`ere equation
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 123-131
%V 201
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_201_a10/
%G ru
%F INTO_2021_201_a10
A. Artikbaev; N. M. Ibodullaeva. The problem of recovering a surface by the given external curvature and solutions of the Monge--Amp\`ere equation. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential equations, geometry, and topology, Tome 201 (2021), pp. 123-131. http://geodesic.mathdoc.fr/item/INTO_2021_201_a10/