The problem of recovering a surface by the given external curvature and solutions of the Monge--Amp\`ere equation
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential equations, geometry, and topology, Tome 201 (2021), pp. 123-131.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we generalize the concept of the spherical mapping of a surface in Euclidean space. The normal mapping of a surface introduced by I. Ya. Bakelman is a special case of the generalized curvature. We prove general properties of the generalized curvature and special properties of the generalized curvature extended to a hyperbolic cylinder. Using these properties, we prove the existence and uniqueness of a solution of the Monge–Ampère equation in a multiply connected domain.
Keywords: spherical mapping, external curvature, normal mapping, generalized conditional curvature, hyperbolic cylinder, multiply connected domain.
@article{INTO_2021_201_a10,
     author = {A. Artikbaev and N. M. Ibodullaeva},
     title = {The problem of recovering a surface by the given external curvature and solutions of the {Monge--Amp\`ere} equation},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {123--131},
     publisher = {mathdoc},
     volume = {201},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_201_a10/}
}
TY  - JOUR
AU  - A. Artikbaev
AU  - N. M. Ibodullaeva
TI  - The problem of recovering a surface by the given external curvature and solutions of the Monge--Amp\`ere equation
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 123
EP  - 131
VL  - 201
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_201_a10/
LA  - ru
ID  - INTO_2021_201_a10
ER  - 
%0 Journal Article
%A A. Artikbaev
%A N. M. Ibodullaeva
%T The problem of recovering a surface by the given external curvature and solutions of the Monge--Amp\`ere equation
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 123-131
%V 201
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_201_a10/
%G ru
%F INTO_2021_201_a10
A. Artikbaev; N. M. Ibodullaeva. The problem of recovering a surface by the given external curvature and solutions of the Monge--Amp\`ere equation. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential equations, geometry, and topology, Tome 201 (2021), pp. 123-131. http://geodesic.mathdoc.fr/item/INTO_2021_201_a10/

[1] Aleksandrov A. D., “Suschestvovanie i edinstvennost vypukloi poverkhnosti s zadannoi integralnoi kriviznoi”, Dokl. AN USSR., 35:5 (1942), 143–147

[2] Aleksandrov A. D., Vnutrennyaya geometriya vypuklykh poverkhnostei, GITTL, M.-L., 1948

[3] Aleksandrov A. D., Vypuklye mnogogranniki, GITTL, M.-L., 1950

[4] Artykbaev A., Verner A. L., “Neodnosvyaznye vypuklye poverkhnosti zadannoi integralnoi uslovnoi vneshnei kriviznoi”, Voprosy differentsialnoi geometrii «v tselom», LGU, L., 1983, 3–8 | MR

[5] Artykbaev A., Sokolov D. D., Geometriya v tselom v ploskom prostranstve-vremeni, Fan, Tashkent, 1991

[6] Bakelman I. Ya., Verner A. L., Kantor B. E., Vvedenie v differentsialnuyu geometriyu «v tselom», Nauka, M., 1973

[7] Pogorelov A. V., Vneshnyaya geometriya vypuklykh poverkhnostei, Nauka, M., 1969

[8] Artykbaev A., “Vosstanovlenie vypuklykh poverkhnostei po vneshnei krivizne v galileevom prostranstve”, Mat. sb., 119 (161):2 (10) (1982), 204–224 | MR | Zbl

[9] Bakelman I. Ya., Convex Analysis and Nonlinear Geometric Elliptic Equations, Springer-Verlag, Berlin–Heidelberg, 1994 | Zbl