Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2021_200_a9, author = {E. V. Nazarova and V. A. Khalova}, title = {An analog of the {Jordan--Dirichlet} theorem for an integral operator whose kernel has discontinuites on the diagonals}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {87--94}, publisher = {mathdoc}, volume = {200}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2021_200_a9/} }
TY - JOUR AU - E. V. Nazarova AU - V. A. Khalova TI - An analog of the Jordan--Dirichlet theorem for an integral operator whose kernel has discontinuites on the diagonals JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 87 EP - 94 VL - 200 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_200_a9/ LA - ru ID - INTO_2021_200_a9 ER -
%0 Journal Article %A E. V. Nazarova %A V. A. Khalova %T An analog of the Jordan--Dirichlet theorem for an integral operator whose kernel has discontinuites on the diagonals %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 87-94 %V 200 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_200_a9/ %G ru %F INTO_2021_200_a9
E. V. Nazarova; V. A. Khalova. An analog of the Jordan--Dirichlet theorem for an integral operator whose kernel has discontinuites on the diagonals. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 20 International Saratov Winter School "Contemporary Problems of Function Theory and Their Applications", Saratov, January 28 — February 1, 2020. Part 2, Tome 200 (2021), pp. 87-94. http://geodesic.mathdoc.fr/item/INTO_2021_200_a9/