An analog of the Jordan--Dirichlet theorem for an integral operator whose kernel has discontinuites on the diagonals
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 20 International Saratov Winter School "Contemporary Problems of Function Theory and Their Applications", Saratov, January 28 — February 1, 2020. Part 2, Tome 200 (2021), pp. 87-94

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, we examine an integral operator whose kernel has first-kind discontinuites at the lines $t=x$ and $t=1-x$. For this operator, we prove an analog of the Jordan–Dirichlet theorem on the convergence of eigenfunction expansion. The convergence is studied using the method based on integration of the resolvent by the spectral parameter.
Keywords: Jordan–Dirichlet theorem, resolvent, eigenfunction.
@article{INTO_2021_200_a9,
     author = {E. V. Nazarova and V. A. Khalova},
     title = {An analog of the {Jordan--Dirichlet} theorem for an integral operator whose kernel has discontinuites on the diagonals},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {87--94},
     publisher = {mathdoc},
     volume = {200},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_200_a9/}
}
TY  - JOUR
AU  - E. V. Nazarova
AU  - V. A. Khalova
TI  - An analog of the Jordan--Dirichlet theorem for an integral operator whose kernel has discontinuites on the diagonals
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 87
EP  - 94
VL  - 200
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_200_a9/
LA  - ru
ID  - INTO_2021_200_a9
ER  - 
%0 Journal Article
%A E. V. Nazarova
%A V. A. Khalova
%T An analog of the Jordan--Dirichlet theorem for an integral operator whose kernel has discontinuites on the diagonals
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 87-94
%V 200
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_200_a9/
%G ru
%F INTO_2021_200_a9
E. V. Nazarova; V. A. Khalova. An analog of the Jordan--Dirichlet theorem for an integral operator whose kernel has discontinuites on the diagonals. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 20 International Saratov Winter School "Contemporary Problems of Function Theory and Their Applications", Saratov, January 28 — February 1, 2020. Part 2, Tome 200 (2021), pp. 87-94. http://geodesic.mathdoc.fr/item/INTO_2021_200_a9/